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Outline

The rotation sets of torus homeomorphisms: general definitions,
results, and questions.

Description of the rotation sets in our family fν .

Steps in constructing and analyzing the family:

A family of maps of the figure-eight viewed as the spine of the
punctured two-dimensional torus.

Rotation set of this family is carried by an embedded (inverse
limit of a simple tower over a) beta-shift

Analyzing the digit frequency sets of beta-shifts (Hall’s talk)

Unwrapping of the figure eight maps to a family of torus
homeomorphisms using the inverse limit.

There is an analogous construction for higher dimensional tori
yielding an similar theorem.
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The rotation sets of torus homeomorphisms:
definitions, questions, and results
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Definitions of rotation vector and set

Let f : T2 → T2 be a homeomorphism of the two-dimensional
torus isotopic to the identity.

Fix a lift to the universal cover f̃ : R2 → R2. It defines a
displacement cocycle D : T2 → R2 via D(z) := f̃(z̃)− z̃ where z̃ is
any lift of z.

The displacement after n iterates is the dynamical cocycle

D(z, n) := D(z) + · · ·+D(fn−1(z)) = f̃n(z̃)− z̃)

The pointwise rotation vector is the average displacement.

ρp(z) = lim
n→∞

D(z, n)

n
= lim

n→∞

f̃n(z̃)− x̃

n
,

if the limit exists (note actual Birkhoff limit).
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Definitions of rotation vector and set

The pointwise rotation set of f is

ρp(f) = {ρp(z) : z ∈ T2}

The pointwise rotation set is the most natural definition but it is
difficult to understand directly.

Misiurewicz & Ziemian proposed the now standard definition of
the rotation set as

ρ(f) = {v ∈ R2 :
D(zi, ni)

ni

→ v with zi ∈ T2, ni →∞}

Obviously ρp(f) ⊂ ρ(f).
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Basic questions

Question 1: Shapes What are the possible geometric shapes of
ρ(f) for torus homeomorphisms f isotopic to the identity?

Question 2: Dynamics How much does the rotation set tell you
about the dynamics of its homeomorphism. Is ρp(f) = ρ(f)? For
each v ∈ ρ(f) is there a nice compact invariant set Xv with
ρ(Xv) = v or an ergodic invariant measure ν with v =

∫
D dµ

Question 3: Bifurcations How does the rotation set change in
parameterized families and what is the generic shape?
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Some terminology

Homeo0(T
2) is all homeomorphisms of the two-torus that are

isotopic to the identity.

A rational polygon in the plane is a convex region with interior that
has finitely many extreme points each of which is contained in Q2.

A extreme point p of a planar convex body C is called a vertex if
Bd(C) is locally isometric to a polygon vertex, or equivalently, if p
is isolated Ex(C), the set of extreme points of C.

A vector v ∈ R2 is irrational if v 6∈ Q2, partially irrational if v · n = 0

for some nonzero n ∈ Z2 and totally irrational if it is irrational and
not partially irrational. Thus v is totally irrational iff z 7→ z + v is
minimal on T2.
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What’s Known – Question 1: Shapes

(Misiurewicz & Ziemian) ρ(h) is always a compact, convex set in
R2, and thus is either a point, an interval or has interior.

Franks–Misiurewicz conjecture (?): If ρ(h) is a nontrivial segment
then either it has a rational endpoint or else it contains infinitely
many rational points.

(Kwapisz) Any rational polygon is ρ(h) for some h ∈ Diff∞

0 (T2).

(Kwapisz) There exist h ∈ Diff1
0(T

2) so that ρ(h) has countably
infinite many rational vertices with two limiting extreme points
which are partially irrational.
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What’s Known – Question 2: Dynamics

Much recent work on case where ρ(h) is a point or interval, and
sometimes with area-preserving. Main focus here Int(ρ(h)) 6= ∅.

(Llibre-MacKay) Int(ρ(h)) 6= ∅ implies htop(h) > 0.

(Franks) For each p/q ∈ Int(ρ(h)) there exists a p/q-periodic
point.

(M.& Z.) For any v ∈ Int(ρ(h)) there is an invariant minimal set Xv

with ρ(Xv) = v. For any v ∈ Int(ρ(h)) ∪ Ex(ρ(h)) there is an
ergodic invariant measure µ with

∫
D dµ = v. There are h which

have points v ∈ Bd(ρ(h)) for which there are no compact invariant
sets Xv with ρ(Xv) = v.

Putting these together, when ρ(h) has interior, ρ(h) = Cl(ρp(h))

with the closure just perhaps adding boundary points.
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What’s Known – Question 3: Bifurcations

Definition: The collection of compact, convex subsets of the plane
is H(R2) and is given the Hausdorff topology and partially ordered
by inclusion.

(Misiurewicz & Ziemian) If fν is a continuous family of
homeomorphisms and ρ(f0) has interior, then ν 7→ ρ(fµ) ∈ H(R

2)

is continuous in a neighborhood of ν = 0.

(Passeggi) The collection of h ∈ Homeo0(T
2) with ρ(h) a rational

polygon contains a C0-open, dense set (Note: The cases ρ(h) is a
point or segment can be included in this set).

(Zanata) If ρ(h) has an irrational extreme point v, then there exists
a homeomorphism f arbitrarily C0-close to h so that ρ(f) 6= ρ(h)

and ρ(f) ∩ ρ(h)c 6= ∅.
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The family of torus homeomorphisms
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Motivation

For non-empty interior do the known shapes of rotation sets
coupled with their Hausdorff continuity give a complete picture of
the behaviour of rotation sets in a family?

The goal was to construct a family in which all the rotation sets
and their changes could be described explicitly.

The family exhibits new phenonena and can be used to test and
formulate conjectures.
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Informal description

The family of torus homeomorphisms is denoted fν with ν ∈ [0, 1],
and we write ρ(ν) := ρMZ(fν).

Roughly, the rotations sets behave like the rotation numbers of a
family of circle homeomorphisms.

The bifurcations of the rotation set take place on a Cantor set
B.

On the closure of the complementary gaps of B the rotation
set mode locks as a “rational structure”, namely, a rational
polygon.

On buried points of B the rotation set has “irrational structure”
with either one or two irrational limit extreme points.

Movie
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parameter retracts this tip



Theorem on Shapes and Bifurcations

A parameter ν0 is called a bifurcation point if there are ν arbitrarily
close to ν0 with ρ(ν) 6= ρ(ν0).

The bifurcation locus of the family, B ⊂ [0, 1], is a zero measure
Cantor set.

For all ν the point-wise and MZ-rotation sets are the same,
ρp(fν) = ρMZ(fν), and have interior.

ν 7→ ρ(ν) ∈ H(R2) is continuous (MZ) and nondecreasing.

The parameter space admits a disjoint decomposition
[0, 1] = P1 ⊔ P2 ⊔ P3.

P1 = ∪[ℓn, rn] with ℓn, rn ∈ B and P1 is full measure in [0, 1],
so P1 is the generic case in the parameter.

P2 ⊔ P3 ⊂ B and consists of buried points in the Cantor set B.
Each of P2 and P3 is an uncountable set which is dense in B.
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Theorem on Shapes and Bifurcations

If ν ∈ P1= ∪[ℓn, rn], then ρ(ν) is a rational polygon which is
constant for ν ∈ [ℓn, rn].

If ν ∈ P2, then Ex(ρ(ν)) consists of countably many rational
vertices and one limit, irrational extreme point.

If ν ∈ P3, then Ex(ρ(ν)) consists of countably many rational
vertices and two limit, irrational extreme points. There is an
exceptional interval between these two extreme points that is on
Bd(ρ(ν))

The rational vertices of each ρ(ν) can be algorithmically
determined.

ν 7→ Ex(ρ(ν)) ∈ H(R2) is discontinuous for t ∈ P3 and continuous
elswhere (the Tal-Zanata property).
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Theorem on Shapes and Bifurcations

The collection of all rotation sets

{ρ(fν) : ν ∈ [0, 1]} ⊂ H(R2)

with the Hausdorff topology is topologically a closed interval I.

The projection π : [0, 1]→ I via ν 7→ ρ(ν) ∈ H(R2) simply
collapses the intervals of P1 to points.

Each of π(P1), π(P2), and π(P2) is dense in I.

Let P ′

2 ⊂ P2 consists of all those ν for which the limit extreme point
of ρ(ν) is totally irrational, then π(P ′

2) contains a dense, Gδ-set in
the interval I. Thus amongst all the rotation sets in the family
given the Hausdorff topology the generic case is to have a single,
totally irrational limit extreme point.
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Dynamics associated with the rotation sets

Given v ∈ ρ(ν) the nicest dynamical representative of v would be
(semi)conjugate to an invariant set of rigid translation on the torus
by v. The next definitions isolate various properties posssed by
this nicest representative.

An invariant set Z ⊂ T2 is called a v-set if ρp(Z) = v, i.e. every
z ∈ Z has pointwise rotation vector v.

A v-set Z is said to have bounded deviation if there exists an M

so that

‖D(z, n)− nv‖ < M (1)

for all n ∈ N and z ∈ Z.
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Dynamics associated with the rotation sets

An invariant measure µ whose support is a (
∫
D dµ)-set is called

directional and otherwise is called lost.

Note that f has a directional ergodic measure µ if and only it has
a (

∫
D dµ)-minimal set.

Recall that Oxtoby’s Theorem says that (Z, g) is uniquely ergodic
iff for every continuous observable the Birkhoff average at ecery
point comverges.

Thus if X ⊂ T2 is uniquely ergodic unique invariant measure µ,
then its unique invariat measure is directional, and directional is in
this way an analog of uniquely ergodic focused just on the
displacement observable.
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Dynamics associated with the rotation sets

Using this language the best dynamical representative of some
v ∈ ρ(ν) would be a uniquely ergodic, v-mimimal set with
bounded deviation.

The unique ergdicity is hard to obtain and we adapt a slightly
weaker definition of a v-good set as an invariant set that is

1. a v-set,

2. a minimal set,

3. of bounded deviation,

4. and the support of a directional measure.

Theorem (MZ): For all v ∈ Int(ρ(h)) there exists a v-good set Zv.

By Franks’ Theorem when v is rational, Zv may be chosen to be a
periodic point.
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Dynamics associated with the rotation sets

So any remaining questions involve v-good sets for v ∈ Bd(ρ(h)).

Theorem: For all ν ∈ [0, 1] and for all v ∈ Bd(ρ(ν))) there exists a
v-good set except for the following two cases:
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Exception 1

When ν ∈ P2, the rotation set ρ(ν) has a single irrational extreme
point which we denote wν .

There always exists a uniquely ergodic, wν-minimal set Zw, but
there are examples in the family where this minimal set is never of
bounded deviation.

Specifically, for some z ∈ Zw and subsequence ni →∞,

‖D(z, ni)− niv‖ ∼ ni
η with 0 < η < 1.

So D(z, ni)/ni → v at a rate of ni
η−1.
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Exception 2

When ν ∈ P3, the rotation set ρ(ν) has a two irrational extreme
points q1 and q2 which are the endpoints of an interval
Jν ⊂ Bd(ρ(ν)).

There exists a minimal set X with ρMZ(X) = Jν .

This minimal set supports exactly two ergodic invariant measures
µi with

∫
D dµi = qi.

X is unique in the sense that any minimal set X ′ with
ρMZ(X

′) ∩ Jν 6= ∅ has ρMZ(X) = Jν and is conjugate to X .

Thus for v ∈ Jν , there is no v-set and the only ergodic invariant
measures representing the limit extreme points q1 and q2 are lost.

Note that for v ∈ Jν there is a point z with ρp(z) = v, but that point
doesn’t have bounded deviation as that would imply that its ω-limit
set is a v-set.
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Zanata’s condition

If h is C1+ǫ and µ is an ergodic measure with ρ(µ) an extreme
point with multiple supporting lines, then µ is directional and the
support has bounded deviation.

If h is C1+ǫ and µ is an ergodic measure with ρ(µ) an extreme
point with one supporting line which does not intersect ρ(h) in a
nontrivial segment, then µ is directional but no conclusion about
bounded deviation.

Our family is C0, but the examples do not contradict these results
since the other hypothesis do not hold.

In exception 1, the limit extreme point has a unique supporting
line.

In exception 2, the supporting line intersects the rotation set in
a nontrivial interval.
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Questions prompted by family

In this family:

A point is a vertex iff it is a rational extreme point and is a
limiting extreme point iff it is an irrational extreme point.

For every point v ∈ ρ(ft) (including points on the boundary)
there is a point x with ρ(x, ft) = v and so ρp(fν) = ρ(fν).

Are these always true?

If gt is a continuous family with ρ(ga) 6= ρ(gb) is the set of extreme
points of ρ(gt) always discontinuous at some points t? (the
Tal-Zanata property)

The crucial techniques for constructing and analyzing this family
are all C0, what happens with more smoothness?
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From Figure-Eight Maps to
Beta-shifts to Torus Homeomorphisms.
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The family of maps of the figure-eight

The figure shows a family gν of maps of the wedge of two circles
or figure-eight E.

The maps are homotopic to the identity and all fix the junction
point P . The parameter ν moves the tip.

Identify points mod one in both directions in figure:
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Rotation vectors for the family g
ν

Rotation about each circle gives a component of the
two-dimensional rotation vector of a point under gν (formalized
using the universal Abelian cover of the figure eight).

The rotation set is denoted ρ(gν).
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Reduction to a beta-shift

For each ν, dynamics of gν is coded by a subshift of
{A,B,X,C, Y, 0, 1, Z}N obtained by pruning away the sequences
for points that land beyond the tip.

Since we just want to compute the rotation sets we find a smaller
subshift that has the same rotation set and is easier to work with.
For example, intervals X, Y, Z were the orientation is reversed are
not needed.
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Reduction to a beta-shift

The state A also turns out to be not needed and the states B and
C only occur as the pair CB, so we call that symbol W .

We are left with a subshift of {W, 0, 1}N. Using the induced order
from W < 0 < 1 this subshift is

{s ∈ {W, 0, 1}N : σk(s) ≤ t for all k ∈ N}

for the appropriate “kneading sequence” t.

Such subshifts have been extensively studied as beta-shifts. They
are Parry’s symbolic description of Renyi’s β-expansions of real
numbers.

Thus to understand the rotation set of gν we need to understand
the asymptotic averages of different symbols in a beta-shift (Toby
Hall’s talk)
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Extending to a family of torus homeomorphisms

The last step is to use the family of maps of the figure-eight to get
a family on the torus.

Fattening up to a fibered neighborhood doesn’t give enough
control over the rotation sets.

A construction of Barge & Martin using a theorem of M. Brown
allows us for each ν to construct a homeomorphism of a
neighborhood of E ⊂ T2 which has the inverse limit lim

←−
(E, gν) as

an attractor. Adding a single repelling fixed point gives a
homeomorphism fν of the torus.

The construction gives you enough control to get the same
rotation sets, ρ(fν) = ρ(gν).

More work is required to get the construction continuous in the
parameter as needed to understand the family of rotation sets.
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