New rotation sets in a family of toral homeomorphisms

Philip Boyland, André de Carvalho & Toby Hall

Surfaces in São Paulo

April, 2014

- The rotation sets of torus homeomorphisms: general definitions, results, and questions.
- **Description of the rotation sets in our family** f_{ν} .
- Steps in constructing and analyzing the family:
 - A family of maps of the figure-eight viewed as the spine of the punctured two-dimensional torus.
 - Rotation set of this family is carried by an embedded (inverse limit of a simple tower over a) beta-shift
 - Analyzing the digit frequency sets of beta-shifts (Hall's talk)
 - Unwrapping of the figure eight maps to a family of torus homeomorphisms using the inverse limit.
- There is an analogous construction for higher dimensional tori yielding an similar theorem.

The rotation sets of torus homeomorphisms: definitions, questions, and results

Definitions of rotation vector and set

- Let $f: \mathbb{T}^2 \to \mathbb{T}^2$ be a homeomorphism of the two-dimensional torus isotopic to the identity.
- Fix a lift to the universal cover *f* : ℝ² → ℝ². It defines a displacement cocycle D : T² → ℝ² via D(z) := *f*(*ž*) − *ž* where *ž* is any lift of z.
- **The displacement after** n iterates is the dynamical cocycle

$$D(z,n) := D(z) + \dots + D(f^{n-1}(z)) = \tilde{f}^n(\tilde{z}) - \tilde{z})$$

The pointwise rotation vector is the average displacement.

$$\rho_p(z) = \lim_{n \to \infty} \frac{D(z, n)}{n} = \lim_{n \to \infty} \frac{f^n(\tilde{z}) - \tilde{x}}{n},$$

if the limit exists (note actual Birkhoff limit).

The pointwise rotation set of f is

$$\rho_p(f) = \{\rho_p(z) \colon z \in \mathbb{T}^2\}$$

- The pointwise rotation set is the most natural definition but it is difficult to understand directly.
- Misiurewicz & Ziemian proposed the now standard definition of the rotation set as

$$\rho(f) = \{ \mathbf{v} \in \mathbb{R}^2 : \frac{D(z_i, n_i)}{n_i} \to \mathbf{v} \text{ with } z_i \in \mathbb{T}^2, n_i \to \infty \}$$

• Obviously $\rho_p(f) \subset \rho(f)$.

- Question 1: Shapes What are the possible geometric shapes of $\rho(f)$ for torus homeomorphisms f isotopic to the identity?
- Question 2: Dynamics How much does the rotation set tell you about the dynamics of its homeomorphism. Is $\rho_p(f) = \rho(f)$? For each $\mathbf{v} \in \rho(f)$ is there a nice compact invariant set $X_{\mathbf{v}}$ with $\rho(X_{\mathbf{v}}) = \mathbf{v}$ or an ergodic invariant measure ν with $\mathbf{v} = \int D \ d\mu$
- Question 3: Bifurcations How does the rotation set change in parameterized families and what is the generic shape?

Some terminology

- Homeo₀(\mathbb{T}^2) is all homeomorphisms of the two-torus that are isotopic to the identity.
- A rational polygon in the plane is a convex region with interior that has finitely many extreme points each of which is contained in Q².
- A extreme point p of a planar convex body C is called a vertex if Bd(C) is locally isometric to a polygon vertex, or equivalently, if p is isolated Ex(C), the set of extreme points of C.
- A vector $\mathbf{v} \in \mathbb{R}^2$ is irrational if $\mathbf{v} \notin \mathbb{Q}^2$, partially irrational if $\mathbf{v} \cdot \mathbf{n} = 0$ for some nonzero $\mathbf{n} \in \mathbb{Z}^2$ and totally irrational if it is irrational and not partially irrational. Thus \mathbf{v} is totally irrational iff $z \mapsto z + \mathbf{v}$ is minimal on \mathbb{T}^2 .

What's Known – Question 1: Shapes

- (Misiurewicz & Ziemian) $\rho(h)$ is always a compact, convex set in \mathbb{R}^2 , and thus is either a point, an interval or has interior.
- Franks–Misiurewicz conjecture (?): If ρ(h) is a nontrivial segment then either it has a rational endpoint or else it contains infinitely many rational points.
- (Kwapisz) Any rational polygon is $\rho(h)$ for some $h \in \text{Diff}_0^\infty(\mathbb{T}^2)$.
- (Kwapisz) There exist $h \in \text{Diff}_0^1(\mathbb{T}^2)$ so that $\rho(h)$ has countably infinite many rational vertices with two limiting extreme points which are partially irrational.

What's Known – Question 2: Dynamics

- Much recent work on case where $\rho(h)$ is a point or interval, and sometimes with area-preserving. Main focus here $Int(\rho(h)) \neq \emptyset$.
- (Llibre-MacKay) $Int(\rho(h)) \neq \emptyset$ implies $h_{top}(h) > 0$.
- (Franks) For each $p/q \in Int(\rho(h))$ there exists a p/q-periodic point.
- (M.& Z.) For any $\mathbf{v} \in \text{Int}(\rho(h))$ there is an invariant minimal set $X_{\mathbf{v}}$ with $\rho(X_{\mathbf{v}}) = \mathbf{v}$. For any $\mathbf{v} \in \text{Int}(\rho(h)) \cup \text{Ex}(\rho(h))$ there is an ergodic invariant measure μ with $\int D d\mu = \mathbf{v}$. There are h which have points $\mathbf{v} \in \text{Bd}(\rho(h))$ for which there are no compact invariant sets $X_{\mathbf{v}}$ with $\rho(X_{\mathbf{v}}) = \mathbf{v}$.
- Putting these together, when $\rho(h)$ has interior, $\rho(h) = Cl(\rho_p(h))$ with the closure just perhaps adding boundary points.

What's Known – Question 3: Bifurcations

- Definition: The collection of compact, convex subsets of the plane is H(R²) and is given the Hausdorff topology and partially ordered by inclusion.
- (Misiurewicz & Ziemian) If f_{ν} is a continuous family of homeomorphisms and $\rho(f_0)$ has interior, then $\nu \mapsto \rho(f_{\mu}) \in \mathcal{H}(\mathbb{R}^2)$ is continuous in a neighborhood of $\nu = 0$.
- (Passeggi) The collection of $h \in \text{Homeo}_0(\mathbb{T}^2)$ with $\rho(h)$ a rational polygon contains a C^0 -open, dense set (Note: The cases $\rho(h)$ is a point or segment can be included in this set).
- (Zanata) If $\rho(h)$ has an irrational extreme point v, then there exists a homeomorphism f arbitrarily C^0 -close to h so that $\rho(f) \neq \rho(h)$ and $\rho(f) \cap \rho(h)^c \neq \emptyset$.

The family of torus homeomorphisms

Motivation

- For non-empty interior do the known shapes of rotation sets coupled with their Hausdorff continuity give a complete picture of the behaviour of rotation sets in a family?
- The goal was to construct a family in which all the rotation sets and their changes could be described explicitly.
- The family exhibits new phenonena and can be used to test and formulate conjectures.

Informal description

- The family of torus homeomorphisms is denoted f_{ν} with $\nu \in [0, 1]$, and we write $\rho(\nu) := \rho_{MZ}(f_{\nu})$.
- Roughly, the rotations sets behave like the rotation numbers of a family of circle homeomorphisms.
 - The bifurcations of the rotation set take place on a Cantor set B.
 - On the closure of the complementary gaps of B the rotation set mode locks as a "rational structure", namely, a rational polygon.
 - On buried points of B the rotation set has "irrational structure" with either one or two irrational limit extreme points.
- Movie

X

Theorem on Shapes and Bifurcations

- A parameter ν_0 is called a bifurcation point if there are ν arbitrarily close to ν_0 with $\rho(\nu) \neq \rho(\nu_0)$.
- The bifurcation locus of the family, $\mathcal{B} \subset [0, 1]$, is a zero measure Cantor set.
- For all ν the point-wise and MZ-rotation sets are the same, $\rho_p(f_{\nu}) = \rho_{MZ}(f_{\nu})$, and have interior.
- $\nu \mapsto \rho(\nu) \in \mathcal{H}(\mathbb{R}^2)$ is continuous (MZ) and nondecreasing.
- The parameter space admits a disjoint decomposition $[0,1] = P_1 \sqcup P_2 \sqcup P_3.$
 - P₁ = $\cup [\ell_n, r_n]$ with $\ell_n, r_n \in \mathcal{B}$ and P_1 is full measure in [0, 1], so P_1 is the generic case in the parameter.
 - P₂ \sqcup P₃ \subset \mathcal{B} and consists of buried points in the Cantor set \mathcal{B} . Each of P₂ and P₃ is an uncountable set which is dense in \mathcal{B} .

- If $\nu \in P_1 = \bigcup[\ell_n, r_n]$, then $\rho(\nu)$ is a rational polygon which is constant for $\nu \in [\ell_n, r_n]$.
- If $\nu \in P_2$, then $Ex(\rho(\nu))$ consists of countably many rational vertices and one limit, irrational extreme point.
- If $\nu \in P_3$, then $\text{Ex}(\rho(\nu))$ consists of countably many rational vertices and two limit, irrational extreme points. There is an exceptional interval between these two extreme points that is on $\text{Bd}(\rho(\nu))$
- The rational vertices of each $\rho(\nu)$ can be algorithmically determined.
- $\nu \mapsto \operatorname{Ex}(\rho(\nu)) \in \mathcal{H}(\mathbb{R}^2)$ is discontinuous for $t \in P_3$ and continuous elswhere (the Tal-Zanata property).

Theorem on Shapes and Bifurcations

The collection of all rotation sets

 $\{\rho(f_{\nu}): \nu \in [0,1]\} \subset \mathcal{H}(\mathbb{R}^2)$

with the Hausdorff topology is topologically a closed interval \mathcal{I} .

- The projection $\pi : [0,1] \to \mathcal{I}$ via $\nu \mapsto \rho(\nu) \in \mathcal{H}(\mathbb{R}^2)$ simply collapses the intervals of P_1 to points.
- Each of $\pi(P_1), \pi(P_2)$, and $\pi(P_2)$ is dense in \mathcal{I} .
- Let $P'_2 \subset P_2$ consists of all those ν for which the limit extreme point of $\rho(\nu)$ is totally irrational, then $\pi(P'_2)$ contains a dense, G_{δ} -set in the interval \mathcal{I} . Thus amongst all the rotation sets in the family given the Hausdorff topology the generic case is to have a single, totally irrational limit extreme point.

- Given v ∈ ρ(ν) the nicest dynamical representative of v would be (semi)conjugate to an invariant set of rigid translation on the torus by v. The next definitions isolate various properties possed by this nicest representative.
- An invariant set $Z \subset \mathbb{T}^2$ is called a **v**-set if $\rho_p(Z) = \mathbf{v}$, i.e. every $z \in Z$ has pointwise rotation vector **v**.
- A v-set Z is said to have bounded deviation if there exists an M so that

$$\|D(z,n) - n\mathbf{v}\| < M \tag{1}$$

for all $n \in \mathbb{N}$ and $z \in Z$.

- An invariant measure μ whose support is a $(\int D d\mu)$ -set is called directional and otherwise is called lost.
- Note that f has a directional ergodic measure μ if and only it has a $(\int D \ d\mu)$ -minimal set.
- Recall that Oxtoby's Theorem says that (Z, g) is uniquely ergodic iff for every continuous observable the Birkhoff average at ecery point converges.
- Thus if X ⊂ T² is uniquely ergodic unique invariant measure μ, then its unique invariat measure is directional, and directional is in this way an analog of uniquely ergodic focused just on the displacement observable.

- Using this language the best dynamical representative of some v ∈ ρ(ν) would be a uniquely ergodic, v-mimimal set with bounded deviation.
- The unique ergdicity is hard to obtain and we adapt a slightly weaker definition of a v-good set as an invariant set that is
 - 1. a v-set,
 - 2. a minimal set,
 - 3. of bounded deviation,
 - 4. and the support of a directional measure.
- Theorem (MZ): For all $\mathbf{v} \in \text{Int}(\rho(h))$ there exists a v-good set $Z_{\mathbf{v}}$.
- By Franks' Theorem when v is rational, Z_v may be chosen to be a periodic point.

- So any remaining questions involve v-good sets for $v \in Bd(\rho(h))$.
- Theorem: For all $\nu \in [0, 1]$ and for all $\mathbf{v} \in Bd(\rho(\nu))$ there exists a **v**-good set except for the following two cases:

- When $\nu \in P_2$, the rotation set $\rho(\nu)$ has a single irrational extreme point which we denote \mathbf{w}_{ν} .
- There always exists a uniquely ergodic, w_v-minimal set Z_w, but there are examples in the family where this minimal set is never of bounded deviation.
- Specifically, for some $z \in Z_w$ and subsequence $n_i \to \infty$,

$$||D(z, n_i) - n_i \mathbf{v}|| \sim n_i^{\eta}$$
 with $0 < \eta < 1$.

So $D(z, n_i)/n_i \rightarrow \mathbf{v}$ at a rate of $n_i^{\eta-1}$.

Exception 2

- When *v* ∈ *P*₃, the rotation set *ρ*(*ν*) has a two irrational extreme points *q*₁ and *q*₂ which are the endpoints of an interval *J_ν* ⊂ Bd(*ρ*(*ν*)).
- There exists a minimal set X with $\rho_{MZ}(X) = J_{\nu}$.
- This minimal set supports exactly two ergodic invariant measures μ_i with $\int D \ d\mu_i = q_i$.
- X is unique in the sense that any minimal set X' with $\rho_{MZ}(X') \cap J_{\nu} \neq \emptyset$ has $\rho_{MZ}(X) = J_{\nu}$ and is conjugate to X.
- Thus for $v \in J_{\nu}$, there is no v-set and the only ergodic invariant measures representing the limit extreme points q_1 and q_2 are lost.
- Note that for $\mathbf{v} \in J_{\nu}$ there is a point z with $\rho_p(z) = \mathbf{v}$, but that point doesn't have bounded deviation as that would imply that its ω -limit set is a \mathbf{v} -set.

Zanata's condition

- If h is C^{1+ϵ} and µ is an ergodic measure with ρ(µ) an extreme point with multiple supporting lines, then µ is directional and the support has bounded deviation.
- If *h* is $C^{1+\epsilon}$ and μ is an ergodic measure with $\rho(\mu)$ an extreme point with one supporting line which does not intersect $\rho(h)$ in a nontrivial segment, then μ is directional but no conclusion about bounded deviation.
- Our family is C^0 , but the examples do not contradict these results since the other hypothesis do not hold.
 - In exception 1, the limit extreme point has a unique supporting line.
 - In exception 2, the supporting line intersects the rotation set in a nontrivial interval.

In this family:

- A point is a vertex iff it is a rational extreme point and is a limiting extreme point iff it is an irrational extreme point.
- For every point $\mathbf{v} \in \rho(f_t)$ (including points on the boundary) there is a point x with $\rho(x, f_t) = \mathbf{v}$ and so $\rho_p(f_\nu) = \rho(f_\nu)$.

Are these always true?

- If g_t is a continuous family with $\rho(g_a) \neq \rho(g_b)$ is the set of extreme points of $\rho(g_t)$ always discontinuous at some points *t*? (the Tal-Zanata property)
- The crucial techniques for constructing and analyzing this family are all C⁰, what happens with more smoothness?

From Figure-Eight Maps to Beta-shifts to Torus Homeomorphisms.

The family of maps of the figure-eight

- The figure shows a family g_{ν} of maps of the wedge of two circles or figure-eight *E*.
- The maps are homotopic to the identity and all fix the junction point P. The parameter ν moves the tip.
- Identify points mod one in both directions in figure:

- Rotation about each circle gives a component of the two-dimensional rotation vector of a point under g_{ν} (formalized using the universal Abelian cover of the figure eight).
- The rotation set is denoted $\rho(g_{\nu})$.

Reduction to a beta-shift

- For each ν, dynamics of g_ν is coded by a subshift of {A, B, X, C, Y, 0, 1, Z}^N obtained by pruning away the sequences for points that land beyond the tip.
- Since we just want to compute the rotation sets we find a smaller subshift that has the same rotation set and is easier to work with. For example, intervals X, Y, Z were the orientation is reversed are not needed.

- The state A also turns out to be not needed and the states B and C only occur as the pair CB, so we call that symbol W.
- We are left with a subshift of $\{W, 0, 1\}^{\mathbb{N}}$. Using the induced order from W < 0 < 1 this subshift is

 $\{\underline{s} \in \{W, 0, 1\}^{\mathbb{N}} \colon \sigma^k(\underline{s}) \le \underline{t} \text{ for all } k \in \mathbb{N}\}$

for the appropriate "kneading sequence" \underline{t} .

- Such subshifts have been extensively studied as beta-shifts. They are Parry's symbolic description of Renyi's β-expansions of real numbers.
- Thus to understand the rotation set of g_v we need to understand the asymptotic averages of different symbols in a beta-shift (Toby Hall's talk)

Extending to a family of torus homeomorphisms

- The last step is to use the family of maps of the figure-eight to get a family on the torus.
- Fattening up to a fibered neighborhood doesn't give enough control over the rotation sets.
- A construction of Barge & Martin using a theorem of M. Brown allows us for each ν to construct a homeomorphism of a neighborhood of $E \subset \mathbb{T}^2$ which has the inverse limit $\varprojlim_{\nu}(E, g_{\nu})$ as an attractor. Adding a single repelling fixed point gives a homeomorphism f_{ν} of the torus.
- The construction gives you enough control to get the same rotation sets, $\rho(f_{\nu}) = \rho(g_{\nu})$.
- More work is required to get the construction continuous in the parameter as needed to understand the family of rotation sets.