Fixed point indices via Conley theory

Luis Hernández Corbato

IMPA

April 8, 2014

Joint work with: Patrice Le Calvez, Francisco R. Ruiz del Portal

・ロト ・回ト ・ヨト ・ヨト

(Local) fixed-point index

- $f : \mathbb{R}^d \to \mathbb{R}^d$.
- f(p) = p and p isolated (in Fix(f)).

Fixed point index of f at p, $i(f, p) \in \mathbb{Z}$, measures the multiplicity of p as a fixed point.

*ロト *個ト * ヨト * ヨト

(Local) fixed-point index

- $f : \mathbb{R}^d \to \mathbb{R}^d$.
- f(p) = p and p isolated (in Fix(f)).

Fixed point index of f at p, $i(f, p) \in \mathbb{Z}$, measures the multiplicity of p as a fixed point.

 $B \cap Fix(f) = \{p\}$ $g : \partial B \to S^{d-1}$ $x \mapsto g(x) := \frac{x - f(x)}{\|x - f(x)\|}$

Definition (Fixed point index at p)

$$i(f,p) = deg(g) \in \mathbb{Z}$$

Remark: If f is C^1 and I - Df is regular at p then $i(f, p) = \pm 1$.

Results about the integer sequence $\{i(f^n, p)\}_{n\geq 1}$

Dold's congruences

 $I = \{i(f^n, p)\}_{n \ge 1}$ satisfies $I = \sum_{k > 1} a_k \sigma^k$

with $a_k \in \mathbb{Z}$ and $\sigma^k = (0, 0, \dots, k, 0, 0, \dots, k, 0, \dots).$

 C^1 maps (Shub – Sullivan) $\{i(f^n, p)\}_{n \ge 1}$ is bounded \Leftrightarrow is periodic.

Planar homeomorphisms

- (Nikishin, Simon, Pelikan–Slaminka, Bonino) f preserves a Borel measure $\Rightarrow i(f, p) \le 1$.
- (Brown, Le Calvez, Le Roux) f orientation-preserving:

$$i(f^n,p) = egin{cases} 1 & ext{otherwise} \ s & ext{if } n \equiv 0 (ext{mod } q) \end{cases} ext{ for some } s \in \mathbb{Z}, q \geq 1.$$

• (Bonino) f orientation-reversing $\Rightarrow i(f, p) = -1, 0, 1.$

Definition (Locally maximal fixed point)

f(p) = p is said to be **isolated as an invariant set** or **locally maximal** if there exists W nbd of p such that the unique **full** orbit contained in W is $\{p\}$. W is called an *isolating neighborhood*.

Definition ("Dynamically adapted" neighborhoods)

B is an **isolating block** of a locally maximal fixed point p if:

- *B* is an isolating neighborhood.
- *B* has no interior "tangencies", i.e., $x, f(x), f^2(x) \in B \Rightarrow f(x) \notin \partial B$.

(日) (同) (三) (三)

Definition (Locally maximal fixed point)

f(p) = p is said to be **isolated as an invariant set** or **locally maximal** if there exists W nbd of p such that the unique **full** orbit contained in W is $\{p\}$. W is called an *isolating neighborhood*.

Definition ("Dynamically adapted" neighborhoods)

B is an **isolating block** of a locally maximal fixed point *p* if:

- *B* is an isolating neighborhood.
- *B* has no interior "tangencies", i.e., $x, f(x), f^2(x) \in B \Rightarrow f(x) \notin \partial B$.

(日) (同) (三) (三)

Definition (Locally maximal fixed point)

f(p) = p is said to be **isolated as an invariant set** or **locally maximal** if there exists W nbd of p such that the unique **full** orbit contained in W is $\{p\}$. W is called an *isolating neighborhood*.

Definition ("Dynamically adapted" neighborhoods)

B is an **isolating block** of a locally maximal fixed point p if:

- *B* is an isolating neighborhood.
- *B* has no interior "tangencies", i.e., $x, f(x), f^2(x) \in B \Rightarrow f(x) \notin \partial B$.

(日) (同) (日) (日)

Any locally maximal p has a **basis** of neighborhoods composed of **isolating blocks**.

Luis Hernández Corbato (IMPA)

Theorem (Le Calvez – Yoccoz, Ruiz del Portal – Salazar)

Let $f:\mathbb{R}^2\to\mathbb{R}^2$ and p a locally maximal fixed point of f , neither a sink nor a source. Then,

a) if
$$f \in \text{Homeo}^+(\mathbb{R}^2)$$

 $i(f^n, p) = \begin{cases} 1 & \text{otherwise} \\ 1 - qr & \text{if } n \equiv 0 \pmod{q} \end{cases}$ for some $r, q \ge 1$.
b) if $f \in \text{Homeo}^-(\mathbb{R}^2)$
 $i(f^n, p) = \begin{cases} a & \text{odd } n \\ a - 2r & \text{even } n \end{cases}$ for some $a \in \{-1, 0, 1\}, r \ge 1$.

In particular, always $i(f^n, p) \leq 1$ and $\{i(f^n, p)\}_{n \geq 1}$ is periodic.

Corollary (Brouwer, Handel, Le Calvez-Yoccoz)

 \nexists minimal homeomorphisms in $S^2 \setminus \{p_1, \ldots, p_r\}$.

Luis Hernández Corbato (IMPA)

What result is expected if *f* only continuous?

Let $\Phi: S^1 \to S^1$ and J a finite union of periodic orbits of Φ . Denote $\varphi := \Phi_{|J}$.

Description of $\#\operatorname{Fix}(\varphi^n)$: $\#\operatorname{Fix}(\varphi^n) = \sum_{q|n} q \cdot \#\{\text{orbits of period } q\}$

・ロト ・回ト ・ヨト ・ヨト

What result is expected if *f* only continuous?

Let $\Phi: S^1 \to S^1$ and J a finite union of periodic orbits of Φ . Denote $\varphi := \Phi_{|J}$.

Description of $\#\operatorname{Fix}(\varphi^n)$: $\#\operatorname{Fix}(\varphi^n) = \sum_{q|n} q \cdot \#\{\text{orbits of period } q\}$ • $\Phi \in \operatorname{Homeo}^+(S^1) \Rightarrow \text{ all orbits have same period } (q)$ $\#\operatorname{Fix}(\varphi^n) = \begin{cases} 0 & \text{otherwise} \\ qr & \text{if } n \equiv 0 \pmod{q} \end{cases}$ for some $r, q \ge 1$.

What result is expected if f only continuous?

Let $\Phi: S^1 \to S^1$ and J a finite union of periodic orbits of Φ . Denote $\varphi := \Phi_{|J}$.

Description of
$$\#\operatorname{Fix}(\varphi^n)$$
:
 $\#\operatorname{Fix}(\varphi^n) = \sum_{q|n} q \cdot \#\{\text{orbits of period } q\}$
• $\Phi \in \operatorname{Homeo}^+(S^1) \Rightarrow \text{ all orbits have same period } (q)$
 $\#\operatorname{Fix}(\varphi^n) = \begin{cases} 0 & \text{otherwise} \\ qr & \text{if } n \equiv 0 \pmod{q} \end{cases}$ for some $r, q \ge 1$.
• $\Phi \in \operatorname{Homeo}^-(S^1) \Rightarrow$ up to 2 fixed points and 2-periodic orbits
 $\#\operatorname{Fix}(\varphi^n) = \begin{cases} b & \text{odd } n \\ b+2r & \text{even } n \end{cases}$ for some $b \in \{0, 1, 2\}, r \ge 1$.

even n

イロン イ団と イヨン イヨン

Theorem (Le Calvez – Yoccoz, Ruiz del Portal – Salazar)

Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ and p a locally maximal fixed point of f, neither a sink nor a source. Then,

a) if
$$f \in \text{Homeo}^+(\mathbb{R}^2)$$

 $i(f^n, p) = \begin{cases} 1 & \text{otherwise} \\ 1 - qr & \text{if } n \equiv 0 \pmod{q} \end{cases}$ for some $r, q \ge 1$.
b) if $f \in \text{Homeo}^-(\mathbb{R}^2)$
 $i(f^n, p) = \begin{cases} a & \text{odd } n \\ a - 2r & \text{even } n \end{cases}$ for some $a \in \{-1, 0, 1\}, r \ge 1$.

In particular, always $i(f^n, p) \leq 1$ and $\{i(f^n, p)\}_{n \geq 1}$ is periodic.

Theorem (Le Calvez – Yoccoz, Ruiz del Portal – Salazar)

Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ and p a locally maximal fixed point of f, neither a sink nor a source. Then, $\exists \Phi : S^1 \to S^1$, $\exists J$ finite with $\Phi(J) = J$ (J is union of Φ -periodic orbits) and $\varphi := \Phi_{|J}$ such that

a) if $f \in \operatorname{Homeo}^+(\mathbb{R}^2) \Rightarrow \Phi \in \operatorname{Homeo}^+(S^1)$ and

$$i(f^n,p)=1-\#\mathrm{Fix}(\varphi^n).$$

b) if
$$f \in \text{Homeo}^{-}(\mathbb{R}^{2})$$

$$i(f^{n}, p) = \begin{cases} a & odd \ n \\ a - 2r & even \ n \end{cases} \text{ for some } a \in \{-1, 0, 1\}, r \ge 1.$$

In particular, always $i(f^n, p) \leq 1$ and $\{i(f^n, p)\}_{n \geq 1}$ is periodic.

< ロ > < 同 > < 三 > < 三

Theorem (Le Calvez – Yoccoz, Ruiz del Portal – Salazar)

Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ and p a locally maximal fixed point of f, neither a sink nor a source. Then, $\exists \Phi : S^1 \to S^1$, $\exists J$ finite with $\Phi(J) = J$ (J is union of Φ -periodic orbits) and $\varphi := \Phi_{|J}$ such that

a) if $f \in \operatorname{Homeo}^+(\mathbb{R}^2) \Rightarrow \Phi \in \operatorname{Homeo}^+(S^1)$ and

 $i(f^n,p)=1-\#\mathrm{Fix}(\varphi^n).$

b) if $f \in \text{Homeo}^{-}(\mathbb{R}^{2}) \Rightarrow \Phi \in \text{Homeo}^{-}(S^{1})$ and

 $i(f^n,p)=1-\#\mathrm{Fix}(\varphi^n).$

In particular, always $i(f^n, p) \leq 1$ and $\{i(f^n, p)\}_{n \geq 1}$ is periodic.

・ロン ・四 と ・ ヨン ・ ヨン

Theorem

Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a **continuous** map and p a locally maximal fixed point of f, neither a sink nor a source. Then, $\exists J$ finite and $\varphi : J \to J$ (no restriction over the possible periods of φ, J) such that

$$i(f^n, p) = 1 - \#\operatorname{Fix}(\varphi^n).$$

In particular, always $i(f^n, p) \leq 1$ and $\{i(f^n, p)\}_{n \geq 1}$ is periodic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $f = R_{2\pi/3} \circ \Psi^1$, Ψ^1 is time-1 map of the flow depicted below. Local unstable set, Local stable set

イロト イヨト イヨト イヨト

 $f = R_{2\pi/3} \circ \Psi^1$

メロト メロト メヨト メヨト

 $f = R_{2\pi/3} \circ \Psi^1$

メロト メロト メヨト メヨト

 $f = R_{2\pi/3} \circ \Psi^1$

イロト イヨト イヨト イヨト

 $f = R_{2\pi/3} \circ \Psi^1$

メロト メポト メヨト メヨト

 $f = R_{2\pi/3} \circ \Psi^1$

・ロト ・回ト ・ヨト ・ヨト

$$f:D\to f(D)$$

$$\hat{f}:\hat{D}\to\hat{D}$$

$$\hat{f}(q_2) = q_3$$

 \hat{D}
 $q_2 = \hat{f}(q_1)$
 $\hat{f}(\hat{D})$
 $q_1 = \hat{f}(q_3)$

 $\{q_1, q_2, q_3\}$ attracting 3-periodic orbit of \hat{f}

・ロト ・回ト ・ヨト ・ヨト

$$1 \xrightarrow{\varphi} 2 \xrightarrow{\varphi} 3 \xrightarrow{\varphi} 1 \qquad \qquad i(f^n, p) = \begin{cases} 1 & \text{otherwise} \\ 1 - 3 & \text{if } n \equiv 0 \pmod{3} \end{cases}$$

 $f : \mathbb{R}^d \to \mathbb{R}^d$ continuous map, p locally maximal fixed point N isolating block of $\{p\}$, L := small nbd of $f^{-1}(N^c) \cap N$

・ロト ・回ト ・ヨト ・

 $f : \mathbb{R}^d \to \mathbb{R}^d$ continuous map, p locally maximal fixed point N isolating block of $\{p\}$, L := small nbd of $f^{-1}(N^c) \cap N$

Define induced map $\overline{f}: N/L \to N/L$, the "fat" point [L] is an attracting fixed point for \overline{f} .

イロト イヨト イヨト イ

 $f : \mathbb{R}^d \to \mathbb{R}^d$ continuous map, p locally maximal fixed point N isolating block of $\{p\}$, L := small nbd of $f^{-1}(N^c) \cap N$

Define induced map $\overline{\overline{f}}: N/L \to N/L$, the "fat" point [L] is an attracting fixed point for \overline{f} .

Theorem (Robbin-Salamon, Mrozek, Szymczak, Franks-Richeson)

The non–nilpotent part of \overline{f}_* : $H_*(N/L) \rightarrow H_*(N/L)$ is independent of (N, L). The invariant is called (discrete homological) Conley index, denoted h(f, p).

$$h_r(f,p) \ni \overline{f}_{*,r}: H_r(N/L) \to H_r(N/L).$$

<ロ> (日) (日) (日) (日) (日)

 $f : \mathbb{R}^d \to \mathbb{R}^d$ continuous map, p locally maximal fixed point N isolating block of $\{p\}$, L := small nbd of $f^{-1}(N^c) \cap N$

Define induced map $\overline{\overline{f}}: N/L \to N/L$, the "fat" point [L] is an attracting fixed point for \overline{f} .

Where is $\{q_1, q_2, q_3\}$ in this description?

イロト イヨト イヨト イ

 $f : \mathbb{R}^d \to \mathbb{R}^d$ continuous map, p locally maximal fixed point N isolating block of $\{p\}$, L := small nbd of $f^{-1}(N^c) \cap N$

Define induced map $\overline{\overline{f}}: N/L \to N/L$, the "fat" point [L] is an attracting fixed point for \overline{f} .

Where is $\{q_1, q_2, q_3\}$ in this description? It is encoded in

$$\overline{f}_{*,1}:H_1(N/L)\to H_1(N/L),$$

イロト イヨト イヨト イヨ

i.e., in the first Conley index.

 $\alpha \in H_1(N/L)$ is 3-periodic under $\overline{f}_{*,1}$.

$$i(\bar{f}, p) + i(\bar{f}, [L]) = \Lambda(\bar{f}) = 1 + \sum_{r \ge 0} (-1)^r \operatorname{trace}(\bar{f}_{*,r})$$

・ロト ・回ト ・ヨト ・ヨト

$$i(f,p)+1=i(\bar{f},p)+i(\bar{f},[L])=\Lambda(\bar{f})=1+\sum_{r\geq 0}(-1)^{r}\mathrm{trace}(\bar{f}_{*,r})$$

trace($\bar{f}_{*,r}$) only depends on the non-nilpotent part of $\bar{f}_{*,r} \Rightarrow$ \Rightarrow it only depends on the Conley index $h_r(f, p)$.

Theorem (Mrozek) $i(f, p) = \sum_{r \ge 0} (-1)^r \operatorname{trace}(\overline{f}_{*,r}) = \sum_{r \ge 0} (-1)^r \operatorname{trace}(h_r(f, p))$

イロト イヨト イヨト イヨト

$$i(f,p)+1=i(\bar{f},p)+i(\bar{f},[L])=\Lambda(\bar{f})=1+\sum_{r\geq 0}(-1)^{r}\mathrm{trace}(\bar{f}_{*,r})$$

trace($\bar{f}_{*,r}$) only depends on the non-nilpotent part of $\bar{f}_{*,r} \Rightarrow$ \Rightarrow it only depends on the Conley index $h_r(f, p)$.

Theorem (Mrozek) $i(f^n, p) = \sum_{r \ge 0} (-1)^r \operatorname{trace}(\bar{f}^n_{*,r}) = \sum_{r \ge 0} (-1)^r \operatorname{trace}(h_r(f^n, p))$

Luis Hernández Corbato (IMPA)

イロト イヨト イヨト イヨト

$$i(f,p)+1=i(\bar{f},p)+i(\bar{f},[L])=\Lambda(\bar{f})=1+\sum_{r\geq 0}(-1)^{r}\mathrm{trace}(\bar{f}_{*,r})$$

trace($\overline{f}_{*,r}$) only depends on the non-nilpotent part of $\overline{f}_{*,r} \Rightarrow$ \Rightarrow it only depends on the Conley index $h_r(f, p)$.

Theorem (Mrozek) $i(f^n, p) = \sum_{r \ge 0} (-1)^r \operatorname{trace}(\bar{f}^n_{*,r}) = \sum_{r \ge 0} (-1)^r \operatorname{trace}(h_r(f^n, p))$

If p is not attracting $\Rightarrow L \neq \emptyset \Rightarrow H_0(N, L) = 0 \Rightarrow \operatorname{trace}(h_0(f^n, p)) = 0$. If p is not repelling $\Rightarrow \partial N$ not totally contained in $L \Rightarrow H_d(N, L) = 0 \Rightarrow \operatorname{trace}(h_d(f^n, p)) = 0$.

イロト イポト イヨト イヨト

$$i(f,p)+1=i(\overline{f},p)+i(\overline{f},[L])=\Lambda(\overline{f})=1+\sum_{r\geq 0}(-1)^r\mathrm{trace}(\overline{f}_{*,r})$$

trace($\bar{f}_{*,r}$) only depends on the non-nilpotent part of $\bar{f}_{*,r} \Rightarrow$ \Rightarrow it only depends on the Conley index $h_r(f, p)$.

Theorem (Mrozek)
$$i(f^n, p) = \sum_{r \ge 0} (-1)^r \operatorname{trace}(\bar{f}^n_{*,r}) = \sum_{r \ge 0} (-1)^r \operatorname{trace}(h_r(f^n, p))$$

Except for attractors and repellers:

In dimension **d** = 2,
$$i(f^n, p) = -\operatorname{trace}(h_1(f^n, p))$$

In dimension **d** = 3, $i(f^n, p) = -\operatorname{trace}(h_1(f^n, p)) + \operatorname{trace}(h_2(f^n, p)))$

イロト イヨト イヨト イヨ

Theorem (Traces of $h_1(f^n, p)$)

There exists J finite and $\varphi : J \rightarrow J$ such that

 $\operatorname{trace}(h_1(f^n,p)) = -1 + \#\operatorname{Fix}(\varphi^n).$

Idea

$$H_1(N/L)$$

$$\downarrow_{\bar{f}_{*,1}}$$

$$H_1(N/L)$$

			C 1	- 1		DAY
1115	Herna	ndez	(orba	to I	IM	PAI

・ロト ・回ト ・ヨト ・ヨ

Theorem (Traces of $h_1(f^n, p)$)

There exists J finite and $\varphi : J \rightarrow J$ such that

$$\operatorname{trace}(h_1(f^n,p)) = -1 + \#\operatorname{Fix}(\varphi^n).$$

Idea

Long exact sequence of homology of the pair (N, L)

メロト メタト メヨト メヨ

Theorem (Traces of $h_1(f^n, p)$)

There exists J finite and $\varphi : J \rightarrow J$ such that

$$\operatorname{trace}(h_1(f^n,p)) = -1 + \#\operatorname{Fix}(\varphi^n).$$

Theorem

Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a **continuous** map and p a locally maximal fixed point, neither a sink nor a source. Then, $\exists J$ finite and $\varphi : J \to J$ such that

$$i(f^n, p) = 1 - \#\operatorname{Fix}(\varphi^n).$$

In particular, always $i(f^n, p) \leq 1$ and $\{i(f^n, p)\}_{n \geq 1}$ is periodic.

(日) (同) (三) (三)

$$i(f^n,p) = -\operatorname{trace}(h_1(f^n,p)) + \operatorname{trace}(h_2(f^n,p)).$$

Szymczak's duality

$$h_2(f,p)\cong \pm h_1(f^{-1},p).$$

 \pm depends on whether *f* is orientation preserving or reversing.

$$\varphi$$
 describes $h_1(f, p)$ and φ' describes $h_1(f^{-1}, p)$

$$i(f^n, p) = -(-1 + \#\operatorname{Fix}(\varphi^n)) + (\pm 1)^n (-1 + \#\operatorname{Fix}(\varphi'^n))$$

Theorem

 φ dominates higher Conley indices: if $Fix(\varphi) = \emptyset$ then $trace(h_2(f, p)) = 0$

イロト イポト イヨト イヨ

Theorem

Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be a homeomorphism and p a locally maximal fixed point, neither a sink nor a source. Then,

- (Le Calvez Ruiz del Portal Salazar) $\{i(f^n, p)\}_{n\geq 1}$ is periodic.
- If f is orientation-reversing then

 $i(f, p) \leq 1.$

Corollary

 \nexists minimal orientation-reversing homeomorphisms in \mathbb{R}^3 .

イロト 不得下 イヨト イヨト

- We can **replace fixed point** *p* by an **invariant acyclic continua** *X* (only need triviality in the homological sense)
- In case X is **not acyclic**, i.e., $\check{H}(X) \neq 0$ then we should have in \mathbb{R}^3

$$i(f^n, X) = \text{periodic term } + \text{trace}(\check{f}^n_{*,1} : \check{H}_1(X) \to \check{H}_1(X)).$$

• Is there any restriction to $\{i(f^n, p)\}_{n \ge 1}$ for continuous $f : \mathbb{R}^2 \to \mathbb{R}^2$ and p isolated as a periodic point?

イロト イヨト イヨト イヨト