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Digit frequency sets of β-shifts

Fix k ≥ 2, and let Σ = {1, 2, . . . , k}N, ordered lexicographically.

For w ∈ Σ, write df(w) ∈ ∆ for the frequency vector of the digits
1, . . . , k, if it exists, where ∆ ⊂ Rk is the standard (k− 1)-simplex.

M⊂ Σ is the set of maximal sequences: σr(w) ≤ w for all r ≥ 0.

Given w ∈M, the associated symbolic β-shift is
X(w) = {v ∈ Σ : σr(v) ≤ w for all r ≥ 0}.

Write DF(w) = {df(v) : v ∈ X(w) has a frequency vector} ⊂ ∆.

Question: What is DF(w)?



Motivation

I As Phil Boyland explained in his talk, calculation of rotation
sets in a specific family of torus homeomorphisms can be
reduced to the calculation of DF(w) in the case k = 3. Many
of the results in his talk are consequences of the results in this
talk.

I Taking higher values of k gives analogous results for families
of homeomorphisms of higher-dimensional tori.

I The results can also be applied to digit frequency sets of
greedy β-expansions of real numbers x ∈ [0, 1],

x =
∞∑
r=1

wr
βr
,

where β > 1 and 0 ≤ wr ≤ k − 1 = dβe − 1.

Rewriting the problem

X(w) = {v ∈ Σ : σr(v) ≤ w for all r ≥ 0}.

DF(w) = {df(v) : v ∈ X(w) has a frequency vector} ⊂ ∆.

Given α ∈ ∆, let R(α) = {v ∈ Σ : df(v) = α}, and
M(α) =M∩R(α) (maximal sequences with frequency α).

Define I(α) = infM(α) ∈ Σ, the α-infimax sequence.

= inf
v∈R(α)

sup
r≥0

σr(v).

Then
DF(w) = {α ∈ ∆ : I(α) ≤ w},

so we aim to calculate I(α) for each α ∈ ∆.

If I(α) ∈M(α) then we call it the α-minimax sequence.



The case k = 2

When k = 2 the simplex ∆ is one-dimensional, and for each
α = (1− α2, α2) ∈ ∆ it is well known that

I(α) = sα2 ,

the Sturmian sequence of rotation α2.

These are all minimax sequences, i.e. df(sα2) = α.

For k ≥ 3 the situation is more complicated. We focus on k = 3:
most of what we do generalises naturally to higher values of k.

The finite problem

There is a finite version of the problem which is easily solved and
which provides some insight into the general case.

We consider words W over the digits 1, 2, . . . , k. Such a word is
maximal if W ∈ Σ is maximal, i.e. if W is at least as large as all of
its cyclic permutations.

Let ∆̂ = {a = (a1, . . . , ak) ∈ Nk : ak > 0}.

For each a ∈ ∆̂, write

R̂(a) = {Words W : W has ai i
s for each i} (a finite set),

M̂(a) = {W ∈ R̂(a) : W is maximal}, and

Î(a) = minM̂(a).

How do we calculate Î(a)? e.g. Î(24, 3, 14) = 31(311)10(312)3 is
the smallest maximal word with 24 1s, 3 2s, and 14 3s.



Solution of the finite problem (Case k = 3)

Let W be the smallest maximal word with a1 1s, a2 2s, and a3 3s.

Let n = ba1/a3c ≥ 0, so that na3 ≤ a1 < (n+ 1) a3.

W = 31nW1 31nW2 · · · 31nWa3 , where Wr are words in 1 and 2.

Each Wr is of the form 1pr2qr .

Some pr = 0, and in particular p1 = 0 since W is maximal.

Every pr ≤ 1. For suppose that ps ≥ 2 for some least s ≥ 2.

Push one of the 1s at the start of Ws to the start of Ws−1. Then
every cyclic permutation starting with the letter 3 becomes
smaller, with the exception of the one before Ws, which can’t be
maximal. (e.g. 31 312222 3111 → 31 3112222 311.)

W = Î(a) is a concatenation of the words 31n, 31n+1 and 2.
(where n = ba1/a3c)

Solution of the finite problem (continued)

For n ≥ 0, let Λn be the substitution

Λn :


1 7→ 2,
2 7→ 3 1n+1,
3 7→ 3 1n.

We’ve showed that Î(a) = Λba1/a3c(V ) for some word V .

By linear algebra, the number of each letter in V is given by

K̂n(a) = (a2, a1 − na3, (n+ 1)a3 − a1).

It can easily be shown that each Λn is order-preserving, and that
the set of words whose image under Λn lies in M̂(a) is exactly

M̂(K̂n(a)), so that

Î(a) = Λn(Î(K̂n(a))), where n = ba1/a3c.



Solution of the finite problem (example)

I If a1 = a2 = 0, then Î(a) = 3a3 .

I Otherwise, Î(a) = Λn(Î(K̂n(a))), where n = ba1/a3c.

(Recall K̂n(a) = (a2, a1 − na3, (n+ 1)a3 − a1)

and Λn : 1 7→ 2, 2 7→ 31n+1, 3 7→ 31n.)

Example a = (24, 3, 14).

(24, 3, 14)
K̂1−→ (3, 10, 4)

K̂0−→ (10, 3, 1)
K̂10−→ (3, 0, 1)

K̂3−→ (0, 0, 1).

3
Λ3−→ 313 Λ10−→ 311023 Λ0−→ 3210(31)3 Λ1−→ 31(311)10(312)3.

So I(24, 3, 14) = 31(311)10(312)3.

Review

∆̂ = {a ∈ N3 : a3 > 0} is partitioned into subsets
∆̂n = {a ∈ ∆ : ba1/a3c = n} for n ≥ 0.

Linear bijection K̂n : ∆̂n → ∆̂ given by
K̂n(a) = (a2, a1 − na3, (n+ 1)a3 − a1).

Alternatively, ∞ to 1 map K̂ : ∆̂→ ∆̂ given by K̂(a) = K̂
Ĵ(a)

(a),

where Ĵ(a) = ba1/a3c.

Itinerary map Φ̂ : ∆̂→ NN given by Φ̂(a)r = Ĵ(K̂r(a)).

Φ̂(a) = n0n1 . . . nr0
∞, since iteration always ends at the fixed

point (0, 0, ∗) ∈ K̂0.

Î(a) = Λn0Λn1 · · ·Λnr(3∗) = Λn0Λn1 · · ·ΛnrΛ∞0 (3∗).



By analogy

∆ = {α ∈ R3
≥0 : α3 > 0,

∑
αi = 1} is partitioned into subsets

∆n = {α ∈ ∆ : bα1/α3c = n} for n ≥ 0.

Projective homeomorphism Kn : ∆n → ∆ given by

Kn(α) =

(
α2

1− α1
,
α1 − nα3

1− α1
,

(n+ 1)α3 − α1

1− α1

)
.

Alternatively, ∞ to 1 map K : ∆→ ∆ given by K(α) = KJ(α)(α),
where J(α) = bα1/α3c.

Itinerary map Φ: ∆→ NN given by Φ(α)r = J(Kr(α)).

S : NN → Σ given by S(n) = limr→∞ Λn0Λn1 · · ·Λnr(3∞).

I(α) = S ◦ Φ(α) by analogy with finite case: a true statement,
though the proof is less straightforward. When α ∈ Q3, reduces to
finite case. (α ∈ Q3 if and only if Φ(α) = n0n1 . . . nr0.)

Each I(α) is almost periodic, so the orbit closure is minimal.

Multidimensional continued fraction algorithm
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Kn(α) =

(
α2

1− α1
,
α1 − nα3

1− α1
,

(n+ 1)α3 − α1

1− α1

)
.



Exceptional proportions

I The itinerary map Φ: ∆→ NN is not injective.
I There are intervals in ∆ all of which have the same itinerary

— and hence the same infimax.
I In these intervals, therefore, the infimax is not a minimax.
I We say that α is exceptional if it shares its itinerary with

other points of ∆, and regular otherwise.

Theorem Let α ∈ ∆ have itinerary n.
I I(α) is a minimax if and only if α is regular.
I If 0 < nr < Cr2 for all r then α is regular.
I If nr ≥ 2r+2

∏r−1
i=0 (ni + 2) for all r ≥ 1 then α is exceptional.

For example if nr = 223r .

The bound in the final part can easily be improved, but describing
the boundary between the regular and exceptional cases is probably
difficult (experimentally, nr = r3 is exceptional).

Bruin and Troubetzkoy prove that, when k = 3, n is exceptional if
nr+1 ≥ Cnr for some C > 1. (Not enough to have nr ≥ Cr.)

Back to the original problem

For w ∈M, we have X(w) = {v ∈ Σ : σr(v) ≤ w for all r ≥ 0},

DF(w) = {df(v) : v ∈ X(w) has a frequency vector}
= {α ∈ ∆ : I(α) ≤ w}.

As w increases, DF(w) changes whenever w passes through an
element of the set IM of infimax sequences.

The map S : NN → IM is an order-preserving homeomorphism
when NN is ordered reverse lexicographically.

NN is a Cantor set N less the right hand endpoints of gaps, which
have left-hand endpoints of the form n0 . . . nr0

∞ (rational case).

We therefore get locally constant digit frequency sets as w moves
through one of these gaps: they are polygons, with N + 3 vertices,
where N is the number of non-zero ni (1 ≤ i ≤ r).

Generic itineraries are regular and correspond to totally irrational α.



Explicit description of digit frequency sets I

For w ∈M, we have X(w) = {v ∈ Σ : σr(v) ≤ w for all r ≥ 0},

DF(w) = {df(v) : v ∈ X(w) has a frequency vector

= {α ∈ ∆ : I(α) ≤ w}.

Writing n = n(w) = max{m ∈ N : S(m) ≤ w} we have
DF(w) = DF(S(n)) = {α ∈ ∆ : Φ(α) ≤ n} =: DF(n).

If Φ(α)0 = n0 then Φ(α) ≤ n ⇐⇒ Φ(Kn0(α)) ≤ σ(n), so we get

DF(n) = K−1
n0

(DF(σ(n))) ∪
⋃

m>n0

∆m.
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Explicit description of digit frequency sets II

The extreme points of DF(n) are obtained from those of
DF(σ(n)), together with one extra point unless n1 = 0.

The extreme points of DF(n) are (0, 0, 1), (0, 1, 0), together with
K−1
n0
◦K−1

n1
◦ · · · ◦K−1

nr
(0, 1, 0), for each r with nr+1 6= 0, and

either one (regular) or two (exceptional) additional extreme points.

DF(n) is a polygon ⇐⇒ n = n0n1 . . . nr0

⇐⇒ the infimax S(n) has rational digit frequency

⇐⇒ n is the left hand endpoint of a gap.
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Infimax sequences and interval translation mappings

Bruin and Troubetzkoy (2003) consider a family of interval
translation mappings T on 3 intervals.

I1 I2 I3

I Renormalize on I2 ∪ I3. I2 returns immediately (1 7→ 2).
I The right hand end of I3 returns after n iterates (3 7→ 31n).
I The left hand end returns after n+ 1 iterates (2 7→ 31n+1).
I The interesting case (when

⋂
n≥0 T

n(I) is a Cantor set) is
when T renormalizes infinitely often: in this case the itinerary
of the right hand endpoint of I is a (non-rational) infimax
sequence.


