Lexicographic infimax sequences

Philip Boyland, André de Carvalho, and Toby Hall

São Sebastião, April 2014.

Digit frequency sets of β -shifts

Fix $k \geq 2$, and let $\Sigma = \{1, 2, \dots, k\}^{\mathbb{N}}$, ordered lexicographically.

For $w \in \Sigma$, write $df(w) \in \Delta$ for the frequency vector of the digits $1, \ldots, k$, if it exists, where $\Delta \subset \mathbb{R}^k$ is the standard (k-1)-simplex.

 $\mathcal{M} \subset \Sigma$ is the set of *maximal* sequences: $\sigma^r(w) \leq w$ for all $r \geq 0$.

Given $w \in \mathcal{M}$, the associated *symbolic* β -*shift* is $X(w) = \{v \in \Sigma : \sigma^r(v) \le w \text{ for all } r \ge 0\}.$

Write $DF(w) = {df(v) : v \in X(w) has a frequency vector} \subset \Delta$.

Question: What is DF(w)?

Motivation

- As Phil Boyland explained in his talk, calculation of rotation sets in a specific family of torus homeomorphisms can be reduced to the calculation of DF(w) in the case k = 3. Many of the results in his talk are consequences of the results in this talk.
- Taking higher values of k gives analogous results for families of homeomorphisms of higher-dimensional tori.
- The results can also be applied to digit frequency sets of greedy β-expansions of real numbers x ∈ [0, 1],

$$x = \sum_{r=1}^{\infty} \frac{w_r}{\beta^r},$$

where $\beta > 1$ and $0 \le w_r \le k - 1 = \lceil \beta \rceil - 1$.

Rewriting the problem

$$X(w) = \{ v \in \Sigma : \sigma^r(v) \le w \text{ for all } r \ge 0 \}.$$

 $DF(w) = {df(v) : v \in X(w) has a frequency vector} \subset \Delta.$

Given $\alpha \in \Delta$, let $\mathcal{R}(\alpha) = \{v \in \Sigma : df(v) = \alpha\}$, and $\mathcal{M}(\alpha) = \mathcal{M} \cap \mathcal{R}(\alpha)$ (maximal sequences with frequency α).

Define
$$\mathcal{I}(\alpha) = \inf \mathcal{M}(\alpha) \in \Sigma$$
, the α -infimax sequence.
= $\inf_{v \in \mathcal{R}(\alpha)} \sup_{r \ge 0} \sigma^r(v)$.

Then

$$DF(w) = \{ \alpha \in \Delta : \mathcal{I}(\alpha) \le w \},\$$

so we aim to calculate $\mathcal{I}(\alpha)$ for each $\alpha \in \Delta$.

If $\mathcal{I}(\alpha) \in \mathcal{M}(\alpha)$ then we call it the α -minimax sequence.

The case k = 2

When k = 2 the simplex Δ is one-dimensional, and for each $\alpha = (1 - \alpha_2, \alpha_2) \in \Delta$ it is well known that

 $\mathcal{I}(\alpha) = s_{\alpha_2},$

the *Sturmian sequence* of rotation α_2 .

These are all *minimax* sequences, i.e. $df(s_{\alpha_2}) = \alpha$.

For $k \ge 3$ the situation is more complicated. We focus on k = 3: most of what we do generalises naturally to higher values of k.

The finite problem

There is a finite version of the problem which is easily solved and which provides some insight into the general case.

We consider words W over the digits $1, 2, \ldots, k$. Such a word is *maximal* if $\overline{W} \in \Sigma$ is maximal, i.e. if W is at least as large as all of its cyclic permutations.

Let $\widehat{\Delta} = \{a = (a_1, \dots, a_k) \in \mathbb{N}^k : a_k > 0\}.$ For each $a \in \widehat{\Delta}$, write

$$\begin{aligned} \widehat{\mathcal{R}}(a) &= \{ \text{Words } W : W \text{ has } a_i \ i^{\text{s}} \text{ for each } i \} \\ \widehat{\mathcal{M}}(a) &= \{ W \in \widehat{\mathcal{R}}(a) : W \text{ is maximal} \}, \text{ and} \\ \widehat{\mathcal{I}}(a) &= \min \widehat{\mathcal{M}}(a). \end{aligned}$$

How do we calculate $\widehat{\mathcal{I}}(a)$? e.g. $\widehat{\mathcal{I}}(24, 3, 14) = 31(311)^{10}(312)^3$ is the smallest maximal word with 24 1^s, 3 2^s, and 14 3^s.

Solution of the finite problem (Case k = 3)

Let W be the smallest maximal word with a_1 1^s, a_2 2^s, and a_3 3^s.

Let $n = \lfloor a_1/a_3 \rfloor \ge 0$, so that $n a_3 \le a_1 < (n+1) a_3$.

 $W = 31^{n}W_{1} \ 31^{n}W_{2} \ \cdots \ 31^{n}W_{a_{3}}$, where W_{r} are words in 1 and 2.

Each W_r is of the form $1^{p_r} 2^{q_r}$.

Some $p_r = 0$, and in particular $p_1 = 0$ since W is maximal.

Every $p_r \leq 1$. For suppose that $p_s \geq 2$ for some least $s \geq 2$.

Push one of the 1^s at the start of W_s to the start of W_{s-1} . Then every cyclic permutation starting with the letter 3 becomes smaller, with the exception of the one before W_s , which can't be maximal. (e.g. $313122223111 \rightarrow 313112222311$.)

 $W = \widehat{\mathcal{I}}(a)$ is a concatenation of the words 31^n , 31^{n+1} and 2. (where $n = \lfloor a_1/a_3 \rfloor$)

Solution of the finite problem (continued)

For $n \ge 0$, let Λ_n be the substitution

$$\Lambda_n: \left\{ \begin{array}{rrr} 1 & \mapsto & 2, \\ 2 & \mapsto & 3 \, 1^{n+1}, \\ 3 & \mapsto & 3 \, 1^n. \end{array} \right.$$

We've showed that $\widehat{\mathcal{I}}(a) = \Lambda_{\lfloor a_1/a_3 \rfloor}(V)$ for some word V. By linear algebra, the number of each letter in V is given by

$$\hat{K}_n(a) = (a_2, \ a_1 - na_3, \ (n+1)a_3 - a_1).$$

It can easily be shown that each Λ_n is order-preserving, and that the set of words whose image under Λ_n lies in $\widehat{\mathcal{M}}(a)$ is exactly $\widehat{\mathcal{M}}(\widehat{K}_n(a))$, so that

$$\widehat{\mathcal{I}}(a) = \Lambda_n(\widehat{\mathcal{I}}(\widehat{K}_n(a))), \quad \text{where } n = \lfloor a_1/a_3 \rfloor.$$

Solution of the finite problem (example)

• If
$$a_1 = a_2 = 0$$
, then $\widehat{\mathcal{I}}(a) = 3^{a_3}$.

• Otherwise,
$$\widehat{\mathcal{I}}(a) = \Lambda_n(\widehat{\mathcal{I}}(\widehat{K}_n(a)))$$
, where $n = \lfloor a_1/a_3 \rfloor$.

(Recall $\widehat{K}_n(a) = (a_2, a_1 - na_3, (n+1)a_3 - a_1)$

and $\Lambda_n: 1 \mapsto 2, 2 \mapsto 31^{n+1}, 3 \mapsto 31^n$.)

Example
$$a = (24, 3, 14).$$

 $(24, 3, 14) \xrightarrow{\widehat{K}_1} (3, 10, 4) \xrightarrow{\widehat{K}_0} (10, 3, 1) \xrightarrow{\widehat{K}_{10}} (3, 0, 1) \xrightarrow{\widehat{K}_3} (0, 0, 1).$
 $3 \xrightarrow{\Lambda_3} 31^3 \xrightarrow{\Lambda_{10}} 31^{10}2^3 \xrightarrow{\Lambda_0} 32^{10}(31)^3 \xrightarrow{\Lambda_1} 31(311)^{10}(312)^3.$

So $\mathcal{I}(24,3,14) = 31(311)^{10}(312)^3$.

Review

 $\widehat{\Delta} = \{a \in \mathbb{N}^3 : a_3 > 0\} \text{ is partitioned into subsets} \\ \widehat{\Delta}_n = \{a \in \Delta : \lfloor a_1/a_3 \rfloor = n\} \text{ for } n \ge 0.$

Linear bijection $\widehat{K}_n : \widehat{\Delta}_n \to \widehat{\Delta}$ given by $\widehat{K}_n(a) = (a_2, a_1 - na_3, (n+1)a_3 - a_1).$

Alternatively, ∞ to 1 map $\widehat{K} : \widehat{\Delta} \to \widehat{\Delta}$ given by $\widehat{K}(a) = \widehat{K}_{\widehat{J}(a)}(a)$, where $\widehat{J}(a) = \lfloor a_1/a_3 \rfloor$.

Itinerary map $\widehat{\Phi} \colon \widehat{\Delta} \to \mathbb{N}^{\mathbb{N}}$ given by $\widehat{\Phi}(a)_r = \widehat{J}(\widehat{K}^r(a)).$

 $\widehat{\Phi}(a) = n_0 n_1 \dots n_r 0^{\infty}$, since iteration always ends at the fixed point $(0, 0, *) \in \widehat{K}_0$.

$$\widehat{\mathcal{I}}(a) = \Lambda_{n_0} \Lambda_{n_1} \cdots \Lambda_{n_r}(3^*) = \Lambda_{n_0} \Lambda_{n_1} \cdots \Lambda_{n_r} \Lambda_0^{\infty}(3^*).$$

By analogy

$$\begin{split} &\Delta = \{ \alpha \in \mathbb{R}^3_{\geq 0} \, : \, \alpha_3 > 0, \sum \alpha_i = 1 \} \text{ is partitioned into subsets} \\ &\Delta_n = \{ \alpha \in \overline{\Delta} \, : \, \lfloor \alpha_1 / \alpha_3 \rfloor = n \} \text{ for } n \geq 0. \end{split}$$

Projective homeomorphism $K_n \colon \Delta_n \to \Delta$ given by

$$K_n(\alpha) = \left(\frac{\alpha_2}{1-\alpha_1}, \frac{\alpha_1 - n\alpha_3}{1-\alpha_1}, \frac{(n+1)\alpha_3 - \alpha_1}{1-\alpha_1}\right).$$

Alternatively, ∞ to 1 map $K: \Delta \to \Delta$ given by $K(\alpha) = K_{J(\alpha)}(\alpha)$, where $J(\alpha) = \lfloor \alpha_1 / \alpha_3 \rfloor$.

Itinerary map $\Phi \colon \Delta \to \mathbb{N}^{\mathbb{N}}$ given by $\Phi(\alpha)_r = J(K^r(\alpha))$.

 $S \colon \mathbb{N}^{\mathbb{N}} \to \Sigma$ given by $S(\mathbf{n}) = \lim_{r \to \infty} \Lambda_{n_0} \Lambda_{n_1} \cdots \Lambda_{n_r} (3^{\infty}).$

 $\mathcal{I}(\alpha) = S \circ \Phi(\alpha)$ by analogy with finite case: a true statement, though the proof is less straightforward. When $\alpha \in \mathbb{Q}^3$, reduces to finite case. ($\alpha \in \mathbb{Q}^3$ if and only if $\Phi(\alpha) = n_0 n_1 \dots n_r \overline{0}$.)

Each $\mathcal{I}(\alpha)$ is *almost periodic*, so the orbit closure is *minimal*.

Multidimensional continued fraction algorithm

Exceptional proportions

- The itinerary map $\Phi \colon \Delta \to \mathbb{N}^{\mathbb{N}}$ is *not injective*.
- There are intervals in \(\Delta\) all of which have the same itinerary

 and hence the same infimax.
- ▶ In these intervals, therefore, the infimax is *not a minimax*.
- We say that α is *exceptional* if it shares its itinerary with other points of Δ, and *regular* otherwise.

Theorem Let $\alpha \in \Delta$ have itinerary **n**.

- $\mathcal{I}(\alpha)$ is a minimax if and only if α is regular.
- If $0 < n_r < Cr^2$ for all r then α is regular.
- If $n_r \ge 2^{r+2} \prod_{i=0}^{r-1} (n_i + 2)$ for all $r \ge 1$ then α is exceptional. For example if $n_r = 2^{2^{3r}}$.

The bound in the final part can easily be improved, but describing the boundary between the regular and exceptional cases is probably difficult (experimentally, $n_r = r^3$ is exceptional).

Bruin and Troubetzkoy prove that, when k = 3, n is exceptional if $n_{r+1} \ge Cn_r$ for some C > 1. (Not enough to have $n_r \ge C^r$.)

Back to the original problem

For $w \in \mathcal{M}$, we have $X(w) = \{v \in \Sigma : \sigma^r(v) \le w \text{ for all } r \ge 0\}$,

$$DF(w) = \{df(v) : v \in X(w) \text{ has a frequency vector}\} \\ = \{\alpha \in \Delta : \mathcal{I}(\alpha) \le w\}.$$

As w increases, DF(w) changes whenever w passes through an element of the set $\mathcal{I}M$ of infimax sequences.

The map $S \colon \mathbb{N}^{\mathbb{N}} \to \mathcal{I}M$ is an *order-preserving homeomorphism* when $\mathbb{N}^{\mathbb{N}}$ is ordered reverse lexicographically.

 $\mathbb{N}^{\mathbb{N}}$ is a *Cantor set* \mathcal{N} less the right hand endpoints of gaps, which have left-hand endpoints of the form $n_0 \dots n_r 0^{\infty}$ (rational case).

We therefore get *locally constant* digit frequency sets as w moves through one of these gaps: they are polygons, with N + 3 vertices, where N is the number of non-zero n_i $(1 \le i \le r)$.

Generic it ineraries are regular and correspond to *totally irrational* α .

Explicit description of digit frequency sets I

For $w \in \mathcal{M}$, we have $X(w) = \{v \in \Sigma : \sigma^r(v) \le w \text{ for all } r \ge 0\}$,

$$\begin{aligned} \mathbf{DF}(w) &= \{ \mathrm{df}(v) \, : \, v \in X(w) \text{ has a frequency vector} \\ &= \{ \alpha \in \Delta \, : \, \mathcal{I}(\alpha) \leq w \}. \end{aligned}$$

Writing $\mathbf{n} = \mathbf{n}(w) = \max\{\mathbf{m} \in \mathcal{N} : S(\mathbf{m}) \le w\}$ we have $DF(w) = DF(S(\mathbf{n})) = \{\alpha \in \Delta : \Phi(\alpha) \le \mathbf{n}\} =: DF(\mathbf{n}).$

f
$$\Phi(\alpha)_0 = n_0$$
 then $\Phi(\alpha) \leq \mathbf{n} \iff \Phi(K_{n_0}(\alpha)) \leq \sigma(\mathbf{n})$, so we get

Explicit description of digit frequency sets II

The extreme points of $DF(\mathbf{n})$ are obtained from those of $DF(\sigma(\mathbf{n}))$, together with one extra point unless $n_1 = 0$.

The extreme points of $DF(\mathbf{n})$ are (0,0,1), (0,1,0), together with $K_{n_0}^{-1} \circ K_{n_1}^{-1} \circ \cdots \circ K_{n_r}^{-1}(0,1,0)$, for each r with $n_{r+1} \neq 0$, and either one (regular) or two (exceptional) additional extreme points.

 $DF(\mathbf{n})$ is a *polygon*

 \iff **n** = $n_0 n_1 \dots n_r \overline{0}$

- \implies the infimax $S(\mathbf{n})$ has rational digit frequency
- \iff **n** is the left hand endpoint of a gap.

Infimax sequences and interval translation mappings

Bruin and Troubetzkoy (2003) consider a family of interval translation mappings T on 3 intervals.

- Renormalize on $I_2 \cup I_3$. I_2 returns immediately $(1 \mapsto 2)$.
- The right hand end of I_3 returns after n iterates $(3 \mapsto 31^n)$.
- The left hand end returns after n + 1 iterates $(2 \mapsto 31^{n+1})$.
- ► The interesting case (when ∩_{n≥0} Tⁿ(I) is a Cantor set) is when T renormalizes infinitely often: in this case the itinerary of the right hand endpoint of I is a (non-rational) infimax sequence.