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Digit frequency sets of [3-shifts

Fix k> 2 and let ¥ = {1,2,...,k}, ordered lexicographically.

For w € X, write df(w) € A for the frequency vector of the digits
1,..., k, if it exists, where A C R is the standard (k — 1)-simplex.

M C X is the set of maximal sequences: ¢"(w) < w for all » > 0.

Given w € M, the associated symbolic [5-shift is
X(w)={veX:o"(v) <wforall r > 0}

Write DF (w) = {df(v) : v € X(w) has a frequency vector} C A.

Question: What is DF(w)?



» As Phil Boyland explained in his talk, calculation of rotation
sets in a specific family of torus homeomorphisms can be
reduced to the calculation of DF(w) in the case k = 3. Many
of the results in his talk are consequences of the results in this
talk.

» Taking higher values of k gives analogous results for families
of homeomorphisms of higher-dimensional tori.

» The results can also be applied to digit frequency sets of
greedy [3-expansions of real numbers z € [0, 1],
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where 5 >1and 0 <w, <k—-1=[8] —1.

Rewriting the problem

X(w)={veX: o (v) <wforall r>0}.
DF(w) = {df(v) : v € X(w) has a frequency vector} C A.

Given a € A, let R(a) ={v € ¥ : df(v) = a}, and
M(a) = MNR(a) (maximal sequences with frequency «).

Define Z(a) = inf M(a) € X, the a-infimax sequence.
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Then

DF(w) ={a € A : T(a) < w},

so we aim to calculate Z(«) for each o € A,

If Z(a) € M(«) then we call it the a-minimax sequence.



The case k = 2

When k = 2 the simplex A is one-dimensional, and for each
a= (1—ay,a) € Aitis well known that

Z() = Say,

the Sturmian sequence of rotation axs.
These are all minimax sequences, i.e. df(sq,) = .

For k > 3 the situation is more complicated. We focus on £ = 3:
most of what we do generalises naturally to higher values of k.

The finite problem

There is a finite version of the problem which is easily solved and
which provides some insight into the general case.

We consider words W over the digits 1,2,...,k. Such a word is
maximal if W € X is maximal, i.e. if W is at least as large as all of
its cyclic permutations.

Let A={a=(ai,...,a;) € NF : q > 0}.

For each a &€ 3 write

R(a) = {Words W : W has a; i° for each i} (a finite set),
M(a) = {W eR(a): W is maximal},  and
Z(a) = minM(a).

How do we calculate Z(a)? e.g. Z(24,3,14) = 31(311)1°(312)3 is
the smallest maximal word with 24 1°, 3 2%, and 14 3°.



Solution of the finite problem (Case k = 3)

Let W be the smallest maximal word with a1 1°, as 2°, and ag 3°.
Let n = |a1/as| >0, so that nag < a; < (n+ 1) as.

W =31"W; 31" W45 - - - 31"W,,,, where W, are words in 1 and 2.
Each W, is of the form 1Pr29",

Some p, = 0, and in particular p; = 0 since W is maximal.

Every p, < 1. For suppose that p; > 2 for some least s > 2.

Push one of the 1° at the start of Wy to the start of W,_1. Then
every cyclic permutation starting with the letter 3 becomes

smaller, with the exception of the one before Wy, which can't be
maximal.  (e.g. 313122223111 — 313112222311.)

W = Z(a) is a concatenation of the words 317, 31" and 2.
(where n = |a1/as])

Solution of the finite problem (continued)

For n > 0, let A,, be the substitution

1 — 2
A, 2 — 317t
3 — 31"

We've showed that Z(a) = A4, jaz) (V') for some word V.

By linear algebra, the number of each letter in V' is given by

A~

K,(a) = (a2, a1 —nas, (n+ 1)ag—aq).

It can easily be shown that each A,, is order-preserving, and that
the set of words whose image under A, lies in M(a) is exactly

M\(I?n(a)) so that

Z(a) = Ap(Z(Kn(a))), where n = |a1 /as].



Solution of the finite problem (example)

> If a; = ag = 0, then Z(a) = 3.
» Otherwise, Z(a) = An(Z(Kn(a))), where n = |a;/as].

(Recall K,(a) = (az, a1 —nas, (n+ 1)ag—a1)
and A, 12, 2+ 317 3 317)

Example a=(24,3,14).

(24,3,14) &% (3,10,4) 2% (10,3,1) 28 (3,0,1) =% (0,0,1).

3 23, 313 A4 371093 Ao, 3510(37)3 A1, 37(311)10(312)3

So 7(24,3,14) = 31(311)19(312)3.

Review

§ = {a € N? : a3 > 0} is partitioned into subsets
A, ={a€A : |a1/az] =n} forn > 0.

Linear bijection IA{n: ﬁn — A given by
Kn(a) = (a2, a1 —nas, (n+ 1)ag—a).

Alternatively, oo to 1 map K: A — A given by I?(a) = [?:]\(a) (a),

A~

where J(a) = |a1/a3].

Itinerary map ®: A — NN given by ®(a), = J(K"(a)).

</Is(a) = noni ...n,0°, since iteration always ends at the fixed
point (0,0, x) € Kj.

f(a) = AnoAn, - Ay, (3%) = ApgAn, - 'AnrASO(?’*)-



By analogy

A={aeRy): a3>0,Y a; =1} is partitioned into subsets
A, ={ae A : |ay/az| =n} forn > 0.

Projective homeomorphism K, : A, — A given by

Ko (o) o9 a; —nas  (n+1)ag — o
o) = .
" 1—a1’ 1—0&1 ’ 1—&1

Alternatively, co to 1 map K: A — A given by K(a) = K j(o)(),
where J(a) = |a1/as].

Itinerary map ®: A — NN given by ®(a), = J(K"()).
S: NN — 3 given by S(n) = lim, o0 ApgAp, - - Ay, (3%).

Z(a) = S o ®(«x) by analogy with finite case: a true statement,
though the proof is less straightforward. When o € Q3, reduces to
finite case. (o € Q3 if and only if ®(a) = ngny ...n,0.)

Each Z(«) is almost periodic, so the orbit closure is minimal.

Multidimensional continued fraction algorithm




Exceptional proportions

> The itinerary map ®: A — NN is not injective.

» There are intervals in A all of which have the same itinerary
— and hence the same infimax.

» |In these intervals, therefore, the infimax is not a minimax.

» We say that a is exceptional if it shares its itinerary with
other points of A, and regular otherwise.

Theorem Let o € A have itinerary n.
» Z(«) is a minimax if and only if « is regular.
» If 0 < n, < Cr? for all r then « is regular.
> If n, > 27 t2[[7Z; (n; + 2) for all 7 > 1 then « is exceptional.

o 3r
For example if n, = 22 .

The bound in the final part can easily be improved, but describing
the boundary between the regular and exceptional cases is probably
difficult (experimentally, n,. = r3 is exceptional).

Bruin and Troubetzkoy prove that, when k = 3, n is exceptional if
ny+1 > Cn, for some C' > 1. (Not enough to have n, > C".)

Back to the original problem

For w € M, we have X (w) ={v € ¥ : ¢"(v) < w for all r > 0},

DF(w) = {df(v) : v € X(w) has a frequency vector}
= {acA: I(a) <w}.

As w increases, DF(w) changes whenever w passes through an
element of the set ZM of infimax sequences.

The map S: NN — ZM is an order-preserving homeomorphism
when NY is ordered reverse lexicographically.

NN is a Cantor set N less the right hand endpoints of gaps, which
have left-hand endpoints of the form ng...n,0° (rational case).

We therefore get locally constant digit frequency sets as w moves
through one of these gaps: they are polygons, with NV + 3 vertices,
where N is the number of non-zero n; (1 <i <r).

Generic itineraries are regular and correspond to totally irrational c.



Explicit description of digit frequency sets |

For w € M, we have X(w) ={v € ¥ : ¢"(v) < w for all » > 0},
DF(w) = {df(v) : v € X(w) has a frequency vector
= {a€A:I(a) <w}.

Explicit description of digit frequency sets Il

The extreme points of DF(n) are obtained from those of
DF(o(n)), together with one extra point unless n; = 0.

The extreme points of DF(n) are (0,0,1), (0,1,0), together with
KyloK, o 0K, %0,1,0), for each r with n,4; # 0, and
either one (regular) or two (exceptional) additional extreme points.

DF(n) is a polygon <= n=ngny...n,0
<= the infimax S(n) has rational digit frequency
<= n is the left hand endpoint of a gap.

1
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Infimax sequences and interval translation mappings

Bruin and Troubetzkoy (2003) consider a family of interval
translation mappings T' on 3 intervals.

1 I I3

Renormalize on Iy U I3. I returns immediately (1 — 2).

The right hand end of I3 returns after n iterates (3 — 31™).
The left hand end returns after n + 1 iterates (2 — 3171).
The interesting case (when (1)~ 7" (I) is a Cantor set) is
when T renormalizes infinitely often: in this case the itinerary
of the right hand endpoint of I is a (non-rational) infimax
sequence.
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