An Introduction to $Out(F_n)$ Part I (Relative) Train Track Maps

Michael Handel

Lehman College

Sao Paolo, April 2014

Michael Handel An Introduction to Out(*F_n*) Part I(Relative) Train Track Maps

イロン イ理 とく ヨン イヨン

Disclaimer

Emphasize aspects that are most accessible to a dynamics audience.

ヘロト ヘ戸ト ヘヨト ヘヨト

F_n

Finite alphabet $\{A, B, \ldots\}$

 $\bar{A} = A^{-1}, \ \bar{B} = B^{-1}, \ \dots$

 F_n = reduced finite words in { $A, \overline{A}, B, \overline{B}, \ldots$ }

Identify F_n with $\pi_1(R_n, *)$.

Each element is represented by a closed path based at *.

Automorphisms $\Phi : F_n \rightarrow F_n$ are represented by homotopy equivalences of R_n that fix the basepoint.

Example: $\Phi : F_2 \rightarrow F_2$

$A \mapsto ABA$ $B \mapsto ABABA$

represented by $f : R_2 \rightarrow R_2$ with the same description.

 $\operatorname{Aut}(F_n) \leftrightarrow$

homotopy equivalence of R_n preserving */ homotopy rel *

$$\operatorname{Out}(F_n) = \operatorname{Aut}(F_n) / \operatorname{Inn}(F_n)$$

 $Out(F_n)$ - forget *

 $Out(F_n) \leftrightarrow homotopy equivalence of R_n / homotopy$

This is too restrictive.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Example:
$$\Phi : F_2 \rightarrow F_2$$

 $A \mapsto \overline{B} \qquad B \mapsto A\overline{B}$

has period 3

$$A \mapsto \bar{B} \mapsto B\bar{A} \mapsto A\bar{B}B = A$$

$$B \mapsto A\bar{B} \mapsto \bar{B}B\bar{A} = \bar{A} \mapsto B$$

but $f : R_2 \rightarrow R_2$ is not periodic.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

A marked graph is a core graph equipped with a homotopy equivalence $\rho : R_n \rightarrow G$

$$\rho \qquad A \mapsto X \overline{Y} \qquad B \mapsto Z \overline{Y}$$

(4) E > (4) E > (1)

The marking ρ identifies $\pi_1(G)$ with $\pi_1(R) = F_n$ (up to inner automorphism) and so

 $Out(F_n) \leftrightarrow homotopy equivalence of G / homotopy$

Continuing Example: $\Phi: A \mapsto \overline{B} B \mapsto A\overline{B}$

 $f: G \to G$ defined by

 $X\mapsto Y\mapsto Z\mapsto X$

represents ϕ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Automorphisms act on elements and subgroups of F_n .

Outer automorphisms act on conjugacy classes of elements and subgroups of F_n .

 $f: G \rightarrow G$ represents $\phi \in \text{Out}(F_n)$ if it induces the same action on conjugacy classes of elements.

・ 同 ト ・ ヨ ト ・ ヨ ト

Other spaces with $\pi_1(X) = F_n$.

Example: A surface S with connected non-empty ∂S

MCG(S) = Homeo(S)/isotopy = Homeo(S)/homotopy

$$Homeo(S) \rightarrow Out(\pi_1(S)) = Out(F_n)$$

induces

 $MCG(S) \hookrightarrow Out(F_n)$

Thurston classification theorem

Assume $\chi(S) < 0$ and not a pair of pants.

Definition 1

 $\mu \in MCG(S)$ is reducible if it preserves a non-empty multicurve C.

In that case each $\mu | S_i$ is a well defined element of MCG(S_i)

Theorem 1 (Thurston)

If μ is irreducible then μ is represented by a pseudo-Anosov homemorphism.

The reducible case is handled by recursion.

There is a canonical μ -invariant multicurve S with the minimal number of complementary components such that each $\mu|S_i$ is either trivial or irreducible.

米間 とくほとくほう

What is the analogue for $Out(F_n)$?

What properties of $f : G \rightarrow G$ do we want?

We are often interested in the action of ϕ on conjugacy classes [*a*] of F_n .

conjugacy classes [a] \leftrightarrow circuits $\sigma \subset G$

 $f(\sigma)$ can be tightened to a circuit $f_{\#}(\sigma)$ and similarly for a path with endpoints at vertices.

We want to minimize tightening.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

 $f: G \to G$ is a train track map if f^k restricts to an immersion on each edge E of G for all $k \ge 1$.

In other words, no tightening is necessary when iterating edges.

米間 とくほとくほう

Directions at *

A B Ā Ē

A turn is an unordered pair of directions with a common basepoint.

The edge path $AA\bar{B}A...$ takes the turns $(\bar{A}, A), (\bar{A}, \bar{B}), (B, \bar{A})...$

→ Ξ → < Ξ →</p>

Nondegenerate turns

(A,B) (A,\overline{A}) (A,\overline{B}) (B,\overline{A}) (B,\overline{B}) $(\overline{A},\overline{B})$

Degenerate turns

$$(A, A)$$
 (B, B) $(\overline{A}, \overline{A})$ $(\overline{B}, \overline{B})$

An edge path is immersed if and only if it that makes only non-degenerate turns.

ヘロト 人間 ト くほ ト くほ トー

Assuming that f is an immersion on each edge there is an induced map Df on directions and turns

$$A \mapsto A \qquad B \mapsto A \qquad \bar{A} \mapsto \bar{A} \qquad \bar{B} \mapsto \bar{A}$$

A turn is illegal if it is mapped by some iterate to a degenerate path.

Illegal turns

$$(A,B)\mapsto (A,A) \qquad (\bar{A},\bar{B})\mapsto (\bar{A},\bar{A})$$

Note: Legal turns are mapped to legal turns.

・ 同 ト ・ ヨ ト ・ ヨ ト

A path is legal if it takes only legal turns.

Michael Handel An Introduction to Out(*F_n*) Part I(Relative) Train Track Maps

→ < Ξ →</p>

The following are equivalent.

- f(E) is a legal path for each edge E.
- I maps legal paths to legal paths.
- If $f^k | E$ is an immersion for each $k \ge 1$ and each edge *E*.

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

To each $f: G \to G$ there is a transition matrix M(f).

Example 3 $A \mapsto ABA \quad B \mapsto ABABA$ $M(f) = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$

If $f: G \to G$ is a train track map then $(M(f))^k = M(f^k)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

There is also a transition graph $\Gamma(f)$

Michael Handel An Introduction to Out(*F_n*) Part I(Relative) Train Track Maps

I am going to assume that each vertex in $\Gamma(f)$ is contained in at least one cycle.

 $\Gamma(f)$ determines a filtration

$$\emptyset = G_0 \subset G_1 \subset \ldots \subset G_N = G$$

by invariant subgraphs built up by starting with an invariant subgraph and then adding strata

$$H_i = G_i - G_{i-1}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Strata correspond to equivalence classes of vertices in $\Gamma(f)$.

Michael Handel An Introduction to $Out(F_n)$ Part I(Relative) Train Track Maps

イロト イポト イヨト イヨト

∃ 990

There are two types of strata for rotationless ϕ

An NEG stratum H_i has one edge E_i and

$$f(E_i) = u_i E_i v_i$$

for paths $u_i, v_i \subset G_{i-1}$

An EG stratum H_r has multiple edges and its transition submatrix has a positive iterate (and so a PF eigenvalue > 1).

・ 同 ト ・ ヨ ト ・ ヨ ト