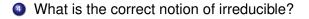
Individual Elements of $Out(F_n)$

- What are the possible growth rates for the action of φ on conjugacy classes [a]?
- Suppose that Φ is an automorphism. Is the fixed subgroup Fix(Φ) = {a ∈ F_n : Φ(a) = a} finitely generated? What can its rank be?
- Output: Note that the second seco

(ロ) (同) (三) (三) (三) (○)



Solution What properites should an $f: G \rightarrow G$ representing an irreducible ϕ have?

What about the reducible case? Does it follow from the irreducible case?

◆□> ◆◎> ◆注> ◆注>

Reducibility

A subgroup *A* of F_n is a free factor if there exists a subgroup *B* such that $F_n = A * B$.

Equivalently, A is realized by a subgraph of a marked graph.

Michael Handel joint with Lee Mosher An Introduction to $Out(F_n)$ Part II The Subgroup Decomposition The

 $\phi \in \text{Out}(F_n)$ is reducible if it preserves (the conjugacy class [A] of) a free factor A

Equivalently, ϕ is represented by $f : G \rightarrow G$ in which f preserves a proper subgraph.

In that case each $\phi|[A]$ is a well defined element of Out(A)

Bad news: There need not be an invariant complementary free factor.

Theorem 1 (BH)

Each irreducible $\phi \in Out(F_n)$ is represented by an (irreducible) train track map.

Proof (Original) : Minimize the entropy.

If $f : G \to G$ is not a train track map then there is a procedure to find a new $f : G \to G$ with smaller PF eigenvalues. This stops after a finite number of iterations.

Proof (Updated [B]) : Minimize the Lipschitz constant for $f: G \rightarrow G$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Iteration of Conjugacy Classes

Motivate Train Track Property

Michael Handel joint with Lee Mosher An Introduction to $Out(F_n)$ Part II The Subgroup Decomposition The

<ロ> (四) (四) (三) (三) (三)

Suppose that $f : G \to G$ is a train track map representing ϕ and that σ a circuit corresponding to [*a*].

If σ is legal then [a] grows exponentially with rate λ

(ロ) (同) (三) (三) (三) (○)

Otherwise

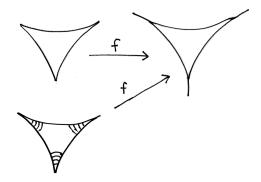
$$\sigma = \sigma_1 \sigma_2 \dots \sigma_p$$

where σ_i is legal and the indicated turns are illegal.

Can assume that the number of illegal turns in $f_{\#}^{k}(\sigma)$ is independent of *k*.

Michael Handel joint with Lee Mosher An Introduction to $Out(F_n)$ Part II The Subgroup Decomposition The

イロト イポト イヨト イヨト 一座



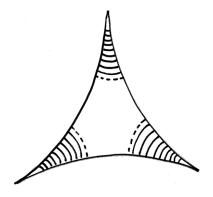
◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ 少々ぐ

The lengths of the subpaths in $f(\sigma_i)$ that are tightened away is uniformly (independent of σ) bounded.

Iterate to form $f_{\#}^{k}(\sigma)$

The lengths of the subpaths in $\bar{\sigma}_i$ and σ_i that are identified is uniformly (independent of σ and k) bounded.

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>



 $\mathcal{P} = \{ \rho : \text{each } f_{\#}^{k}(\rho) \text{ has exactly one illegal turn and uniformly bounded length } \}$

 \mathcal{P} is a finite $f_{\#}$ -invariant set

Lemma 2

For every σ there exists K such that $f_{\#}^{k}(\sigma)$ has a splitting into legal subpaths and periodic elements of \mathcal{P} for all $k \geq K$.

Corollary 3

Each [a] is either ϕ -periodic or grows exponentially (with growth rate λ).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition 1

Each irreducible ϕ is represented by an irreducible train track map $f : G \to G$ such that \mathcal{P} has at most one periodic element ρ .

If there is such a ρ and if it closed then it crosses every edge of G exactly twice.

Corollary 4

If Φ represents ϕ then Fix(Φ) has rank at most one.

Corollary 5

An irreducible ϕ is geometric if and only if it preserves a (necessarily unique) conjugacy class

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Some Theorems

Theorem 6 (BH)

(Scott Conjecture) The rank of $Fix(\Phi)$) is $\leq n$ for all $\Phi \in Aut(F_n)$.

Example 7 Φ : $A \mapsto A$ $B \mapsto BA$ $C \mapsto CA^2$ $Fix(\Phi) = \langle A, BA\bar{B}, CA\bar{C} \rangle$

Michael Handel joint with Lee Mosher An Introduction to $Out(F_n)$ Part II The Subgroup Decomposition The

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem 8 (BH)

For each $\phi \in \text{Out}(F_n)$ and conjugacy class [a] the length of $\phi^k([a])$ either grows polynomially of degree $\leq n-1$ or exponentially.

Subgroups of $Out(F_n)$

• Does $Out(F_n)$ satisfy the Tits Alternative? (Every finitely generated subgroup is either virtually abelian or contains a free group of rank ≥ 2 .)?

Por which φ, ψ ∈ Out(F_n) does there exist N such that ⟨φ^N, ψ^N⟩ is free? Can one choose N independently of φ, ψ?

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

What do abelian subgroups look like?

Is it true that every finitely generated subgroup of $Out(F_n)$ is either virtually abelian or has infinitely generated H_h^2 ?

Does every finitely generated irreducible subgroup contain an irreducible element?

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition 9

A subgroup \mathcal{H} of $Out(F_n)$ is *irreducible* if there is no free factor whose conjugacy class is \mathcal{H} -invariant.

Theorem 10 (HM)

[Absolute version] If $\mathcal{H} < Out(F_n)$) is finitely generated and irreducible then \mathcal{H} contains an irreducible element.