An Introduction to $Out(F_n)$ Part II The Subgroup DecompositionTheorem

Michael Handel joint with Lee Mosher

Lehman College

Sao Paolo, April 2014

イロト イポト イヨト イヨト 一座

Subgroup Decomposition Theorem (Absolute Version)

Definition 1

A subgroup \mathcal{H} of $Out(F_n)$ is *irreducible* if there is no free factor whose conjugacy class is \mathcal{H} -invariant.

Theorem 2 (HM)

[Absolute version] If $\mathcal{H} < \text{Out}(F_n)$) is finitely generated and irreducible then \mathcal{H} contains an irreducible element.

Simplifying Assumptions:

- ϕ acts trivially on $\mathbb{Z}/3\mathbb{Z}$ homology
- $f: G \rightarrow G$ is a train track map.
- All subgraphs are connected. (Algebraically, all free factor systems are free factors)
- All EG strata are non-geometric.

Recall that $f : G \to G$ has a transition graph $\Gamma(f)$ and a filtration by invariant subgraphs.

Attracting Laminations

A line γ in a marked graph *G* is a bi-infinite immersed edge path.

A lamination is a closed set of lines.

Theorem 3 (BFH)

Each EG stratum determines an attracting lamination Λ^+ and a repelling lamination Λ^- .

Roughly speaking, Λ^+ is the closure of the unstable manifold of a periodic point.

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

Example 4

 $A \mapsto ABCA$ $B \mapsto BCA$ $C \mapsto CBCBC$

Iterate C and focus on middle copy of C (or fixed point in middle of C

 $C \mapsto CBCBC \mapsto (CBCBC)(BCA)(CBCBC)(BCA)(CBCBC) \mapsto \dots$

We have an increasing sequence of paths whose limit is an invariant line. The closure of this line is Λ^+ .

This is independent of which periodic point you start with.

Weak Topology on Lines

Neighborhood basis for a line $\gamma \subset G$:

Choose an exhaustion $\gamma_0 \subset \gamma_1 \subset \gamma_2 \subset \dots$ of γ .

 $\sigma \in N(\gamma_k)$ if γ_k is an unoriented subpath of σ .

This can be made independent of *G* by using the marking and universal covers.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ○ ○ ○ ○

Lemma 5 (Cooper)

Suppose that $f : G_1 \to G_2$ is a homotopy equivalence and that $\tilde{f} : \tilde{G}_1 \to \tilde{G}_2$ is a lift. Then there is a constant C(f) such that:

For any finite path $\tilde{\sigma}$, with endpoints say \tilde{x} and \tilde{y} , the image $\tilde{f}(\tilde{\sigma})$ is contained in the C(f)-neighborhood of the path $\tilde{f}_{\#}(\tilde{\sigma})$ connecting $\tilde{f}(\tilde{x})$ to $\tilde{f}(\tilde{y})$.

▲□ → ▲ □ → ▲ □ → ▲ □ → ④ Q ()

Corollary 6

Same hypotheses. For any line $\tilde{L} \subset \tilde{G}_1$ there is a unique line $\tilde{f}_{\#}(\tilde{L}) \subset \tilde{G}_2$ such that $\tilde{f}(\tilde{L}_1)$ is contained in the C(f)-neighborhood of $\tilde{f}_{\#}(\tilde{L}_1)$.

Corollary 7

Same hypotheses. Let $\tau := f_{\#\#}(\sigma) \subset G_2$ be the path obtained from $f_{\#}(\sigma)$ by removing the initial and terminal subpaths of length C(f). Then $f_{\#}(N(\sigma)) \subset N(\tau)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Corollary 8

 Λ^+ has an attracting neighborhood.

What is the basin of attraction? Better, what is its complement of the basin?

Definition 9

A path of the form $f^k(E)$ is a *k*-tile or just a tile if *k* is unspecified.

Lemma 10

A line is a leaf of Λ^+ if and only if each of its subpaths is contained in a tile.

Lemma 11

A circuit σ is weakly attracted to Λ^+ if and only if for each k there exists M such that $f_{\#}^m(\sigma)$ contains a k-tile for all $m \ge M$.

イロト イポト イヨト イヨト 一座

If ϕ is irreducible and non-geometric then the action on lines has N-S dynamics.

Michael Handel joint with Lee Mosher An Introduction to Out(Fn) Part II The Subgroup DecompositionThe

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

 $\Lambda_r^+ \longleftrightarrow H_r$

 Z_r = subgraph of *G* whose edges *E* satisfy: there is no oriented path in $\Gamma(f)$ from the vertex representing *E* to a vertex representing an edge in H_r .

A circuit is NOT attracted to Λ_r^+ if and only if it is contained in Z_r .

 $NA(\Lambda)$ is the free factor corresponding to Z_r

There is another useful invariant of Λ_r^+ .

The free factor support $FFS(\Lambda_r^+)$ is the smallest free factor that contains Λ_r^+ .

One can arrange that $FFS(\Lambda_r^+) = G_r$ for any one EG stratum.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

 ϕ is irreducible if and only if it has an attracting lamination Λ^+ such that NA(Λ^+) is trivial and FFS(Λ^+) = [F_n].

Example 14

- $f: R_5 \rightarrow R_5$ fixes A, B, C and $D \mapsto DwE$ and $E \mapsto DDE$.
- $\Lambda^+ \longleftrightarrow (D, E)$ stratum

If *w* is complicated then $FFS = [F_n]$ and $NA = [\langle A, B, C \rangle]$.

Michael Handel joint with Lee Mosher An Introduction to $Out(F_n)$ Part II The Subgroup Decomposition The

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example 15

 $f: R_4 \rightarrow R_4$ A, B, C is an EG stratum and $D \mapsto Dw$.

 $\Lambda^+ \longleftrightarrow (A, B, C)$ stratum

If *w* is non-trivial then $FFS = [\langle A, B, C \rangle]$ and *NA* is trivial.

Michael Handel joint with Lee Mosher An Introduction to Out(Fn) Part II The Subgroup DecompositionThe

Strategy of Proof

Find EG Prove that \mathcal{H} contains at least one element with exponential growth.

Reduce NA Prove that if $\phi \in \mathcal{H}$ has an attracting lamination Λ_{ϕ}^+ and $NA(\Lambda_{\phi})$ has rank R > 0 then there exists $\xi \in \mathcal{H}$ and Λ_{ξ}^+ such that $NA(\Lambda_{\xi})$ has rank < R.

Make FFS Bigger Prove that if $\phi \in \mathcal{H}$ and $NA(\Lambda_{\phi})$ is trivial and $FFS(\Lambda_{\phi}^+)$ has rank has rank S < n then there exists $\xi \in \mathcal{H}$ and Λ_{ξ}^+ such that $NA(\Lambda_{\xi})$ is trivial and $FFS(\Lambda_{\xi}^+)$ has rank has rank > S

In the MCG(S) this amounts to showing:

If D_{α} and D_{β} are Dehn twists and if α crosses β then $D_{\alpha}^{m}D_{\beta}^{n}$ has a pseudo-Anosov component for some (all) large m, n.

If S_{ϕ} is a pseudo-Anosov component for ϕ and S_{ψ} is a pseudo-Anosov component for ψ and if S_1 crosses S_2 then $S_1 \cup S_2$ is contained in a pseudo-Anosov component for $\phi^m \psi^n$ for some (all) large m, n.

To find an EG element we apply

Theorem 16 (Kolchin Theorem)

[BFH] If every element of \mathcal{H} is UPG then there is an \mathcal{H} -invariant filtration $\emptyset = G_0 \subset G_1 \subset \ldots \subset G_N = G$ where each stratum has one edge.

Reducing NA

Start with ϕ and Λ_{ϕ}^+ with $NA(\phi)$ a proper free factor.

Example 17 $A \mapsto AB$ $B \mapsto BAB$ $C \mapsto CD$ $D \mapsto DACD$ $\Lambda^+ \longleftrightarrow (C, D)$ NA = (A, B)

Michael Handel joint with Lee Mosher An Introduction to $Out(F_n)$ Part II The Subgroup Decomposition The

Using irreducibility of \mathcal{H} choose $\theta \in \mathcal{H}$ such that $\theta(NA(\phi)) \neq NA(\phi)$.

Let
$$\psi = \theta \phi \theta^{-1}$$
 so $\Lambda_{\psi}^+ = \theta(\Lambda_{\phi}^+)$ and $NA(\psi) = \theta(NA(\phi))$.

Michael Handel joint with Lee Mosher An Introduction to $Out(F_n)$ Part II The Subgroup Decomposition The

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

We are interested in $\xi = \phi^k \psi^l$ for k, l > K for some large K.

Draw abstract picture.

 $\theta(\Lambda_r^+)$ is weakly attracted to Λ_r^+ .

Proof.

Can assume that $FFS(\Lambda_{\phi}^+)$ is realized by a subgraph G_r .

The homology assumption implies that $\theta(G_r)$ crosses every edge in G_r .

This implies that $\theta(\Lambda_r^+)$ crosses every edge in G_r and hence is not contained in $NA(\Lambda_r^+)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

There is an attracting neighborhood U_{ϕ}^+ for Λ_{ϕ}^+ with the following property:

For any neighborhood V_{ϕ} of Λ_{ϕ} we have $\xi(U_{\phi}) \subset V_{\phi}$ for all sufficiently large K.

Write $U_{\phi} = N(\alpha_0)$ for some subpath α_0 of Λ_{ϕ}^+ .

Sinc Λ_{ϕ}^+ is birecurrent we can choose a subpath α_1 that contains three disjoint copies of α_0 .

Choose $V_{\phi} = N(\alpha_1)$.

Interpretation: $f_{\#\#}(\alpha_0)$ contains three disjoint copies of α_0 .

Construct attracting invariant line and Λ_{ξ}^+ by iteration as in the Example.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

 $\mathit{NA}(\Lambda^+_\xi) \subset \mathit{NA}(\Lambda^+_\phi) \cap \mathit{NA}(\Lambda^+_\psi)$

Since $NA(\Lambda_{\phi}^+) \cap NA(\Lambda_{\psi}^+) = NA(\Lambda_{\phi}^+) \cap \theta(NA(\Lambda_{\phi}^+))$ this completes the proof because $NA(\Lambda_{\phi}^+)$ is not \mathcal{H} -invariant.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ◆ □ ● ● ● ● ●